Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(13): 5894-5901, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368991

RESUMO

Oxidation of transition metal dichalcogenides (TMDs) occurs readily under a variety of conditions. Therefore, understanding the oxidation processes is necessary for successful TMD handling and device fabrication. Here, we investigate atomic-scale oxidation mechanisms of the most widely studied TMD, MoS2. We find that thermal oxidation results in α-phase crystalline MoO3 with sharp interfaces, voids, and crystallographic alignment with the underlying MoS2. Experiments with remote substrates prove that thermal oxidation proceeds via vapor-phase mass transport and redeposition, a challenge to forming thin, conformal films. Oxygen plasma accelerates the kinetics of oxidation relative to the kinetics of mass transport, forming smooth and conformal oxides. The resulting amorphous MoO3 can be grown with subnanometer to several-nanometer thickness, and we calibrate the oxidation rate for different instruments and process parameters. Our results provide quantitative guidance for managing both the atomic scale structure and thin-film morphology of oxides in the design and processing of TMD devices.

2.
Nano Lett ; 23(11): 4807-4814, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37224193

RESUMO

Heterogeneities in structure and polarization have been employed to enhance the energy storage properties of ferroelectric films. The presence of nonpolar phases, however, weakens the net polarization. Here, we achieve a slush-like polar state with fine domains of different ferroelectric polar phases by narrowing the large combinatorial space of likely candidates using machine learning methods. The formation of the slush-like polar state at the nanoscale in cation-doped BaTiO3 films is simulated by phase field simulation and confirmed by aberration-corrected scanning transmission electron microscopy. The large polarization and the delayed polarization saturation lead to greatly enhanced energy density of 80 J/cm3 and transfer efficiency of 85% over a wide temperature range. Such a data-driven design recipe for a slush-like polar state is generally applicable to quickly optimize functionalities of ferroelectric materials.

3.
Nanotechnology ; 31(50): 505203, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021209

RESUMO

This work reports a comprehensive investigation of the effect of gallium telluride (GaTe) cell temperature variation (TGaTe) on the morphological, optical, and electrical properties of doped-GaAsSb nanowires (NWs) grown by Ga-assisted molecular beam epitaxy (MBE). These studies led to an optimum doping temperature of 550 °C for the growth of tellurium (Te)-doped GaAsSb NWs with the best optoelectronic and structural properties. Te incorporation resulted in a decrease in the aspect ratio of the NWs causing an increase in the Raman longitudinal optical/transverse optical vibrational mode intensity ratio, large photoluminescence emission with an exponential decay tail on the high energy side, promoting tunnel-assisted current conduction in ensemble NWs and significant photocurrent enhancement in the single nanowire. A Schottky barrier photodetector (PD) using Te-doped ensemble NWs with broad spectral range and a longer wavelength cutoff at ∼1.2 µm was demonstrated. These PDs exhibited responsivity in the range of 580-620 A W-1 and detectivity of 1.2-3.8 × 1012 Jones. The doped GaAsSb NWs have the potential for further improvement, paving the path for high-performance near-infrared (NIR) photodetection applications.

4.
Microsc Microanal ; 26(5): 938-943, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32778194

RESUMO

We report an approach to expand the effective number of pixels available to small, two-dimensional electron detectors. To do so, we acquire subsections of a diffraction pattern that are then accurately stitched together in post-processing. Using an electron microscopy pixel array detector (EMPAD) that has only 128 × 128 pixels, we show that the field of view can be expanded while achieving high reciprocal-space sampling. Further, we highlight the need to properly account for the detector position (rotation) and the non-orthonormal diffraction shift axes to achieve an accurate reconstruction. Applying the method, we provide examples of spot and convergent beam diffraction patterns acquired with a pixelated detector.

5.
ACS Nano ; 18(21): 13458-13467, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739873

RESUMO

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

6.
Nat Commun ; 15(1): 5083, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877043

RESUMO

Complex oxides offer rich magnetic and electronic behavior intimately tied to the composition and arrangement of cations within the structure. Rare earth iron garnet films exhibit an anisotropy along the growth direction which has long been theorized to originate from the ordering of different cations on the same crystallographic site. Here, we directly demonstrate the three-dimensional ordering of rare earth ions in pulsed laser deposited (EuxTm1-x)3Fe5O12 garnet thin films using both atomically-resolved elemental mapping to visualize cation ordering and X-ray diffraction to detect the resulting order superlattice reflection. We quantify the resulting ordering-induced 'magnetotaxial' anisotropy as a function of Eu:Tm ratio using transport measurements, showing an overwhelmingly dominant contribution from magnetotaxial anisotropy that reaches 30 kJ m-3 for garnets with x = 0.5. Control of cation ordering on inequivalent sites provides a strategy to control matter on the atomic level and to engineer the magnetic properties of complex oxides.

7.
ACS Nano ; 17(6): 5316-5328, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926838

RESUMO

Correlated quantum phenomena in one-dimensional (1D) systems that exhibit competing electronic and magnetic order are of strong interest for the study of fundamental interactions and excitations, such as Tomonaga-Luttinger liquids and topological orders and defects with properties completely different from the quasiparticles expected in their higher-dimensional counterparts. However, clean 1D electronic systems are difficult to realize experimentally, particularly for magnetically ordered systems. Here, we show that the van der Waals layered magnetic semiconductor CrSBr behaves like a quasi-1D material embedded in a magnetically ordered environment. The strong 1D electronic character originates from the Cr-S chains and the combination of weak interlayer hybridization and anisotropy in effective mass and dielectric screening, with an effective electron mass ratio of mXe/mYe ∼ 50. This extreme anisotropy experimentally manifests in strong electron-phonon and exciton-phonon interactions, a Peierls-like structural instability, and a Fano resonance from a van Hove singularity of similar strength to that of metallic carbon nanotubes. Moreover, because of the reduced dimensionality and interlayer coupling, CrSBr hosts spectrally narrow (1 meV) excitons of high binding energy and oscillator strength that inherit the 1D character. Overall, CrSBr is best understood as a stack of weakly hybridized monolayers and appears to be an experimentally attractive candidate for the study of exotic exciton and 1D-correlated many-body physics in the presence of magnetic order.

8.
ACS Appl Mater Interfaces ; 9(12): 10946-10954, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28272862

RESUMO

An n-type organosilane-metal ion hybrid of Rhodamine B-silane and copper cation (Cu-RBS) was investigated as a low-temperature thermoelectric material. Computational analysis revealed the most likely localized binding site of Cu2+ was to the Rhodamine B core and provided predictions of molecular orbitals and electrostatic potentials upon complexation. The concentration-dependent optical absorption and emission spectra confirmed the effective metal-ligand charge transfer from Cu2+ to the xanthene core of RBS, indicating the potential for improved electrical properties for the complex relative to RBS. The electrical conductivity and Seebeck thermoelectric (TE) behavior were evaluated and compared with its precursor complex of Rhodamine B and copper cation. While a moderately high electrical conductivity of 4.38 S m-1 was obtained for the Cu-RBS complex, the relatively low Seebeck coefficient of -26.2 µV/K resulted in a low TE power factor. However, compared to other organic doped materials, these results were promising toward developing n-type thermoelectric materials with no doping agents. Both phase segregation and thin film heterogeneity remain to be optimized; thus, the balance between Cu2+ domains and RBS domain phases will likely yield higher Seebeck coefficients and improved power factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA