Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(1): 74-83, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37990495

RESUMO

Recombinant adeno-associated virus (rAAV) vectors could be manufactured by plasmid transfection into human embryonic kidney 293 (HEK293) cells or baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. However, systematic comparisons between these systems using large-scale, high-quality AAV vectors are lacking. rAAV from Sf9 cells (Sf9-rAAV) at 2-50 L and HEK293 cells (HEK-rAAV) at 2-200 L scales were characterized. HEK-rAAV had ∼40-fold lower yields but ∼10-fold more host cell DNA measured by droplet digital PCR and next-generation sequencing, respectively. The electron microscope observed a lower full/empty capsid ratio in HEK-rAAV (70.8%) than Sf9-rAAV (93.2%), while dynamic light scattering and high-performance liquid chromatography analysis showed that HEK-rAAV had more aggregation. Liquid chromatography tandem mass spectrometry identified different post-translational modification profiles between Sf9-rAAV and HEK-rAAV. Furthermore, Sf9-rAAV had a higher tissue culture infectious dose/viral genome than HEK-rAAV, indicating better infectivity. Additionally, Sf9-rAAV achieved higher in vitro transgene expression, as measured by ELISA. Finally, after intravitreal dosing into a mouse laser choroidal neovascularization model, Sf9-rAAV and HEK-rAAV achieved similar efficacy. Overall, this study detected notable differences in the physiochemical characteristics of HEK-rAAV and Sf9-rAAV. However, the in vitro and in vivo biological functions of the rAAV from these systems were highly comparable. Sf9-rAAV may be preferred over HEK293-rAAV for advantages in yields, full/empty ratio, scalability, and cost.


Assuntos
Vetores Genéticos , Rim , Animais , Camundongos , Humanos , Células HEK293 , Vetores Genéticos/genética , Transfecção , Células Sf9 , Dependovirus/genética
2.
Front Immunol ; 15: 1365803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646520

RESUMO

Introduction: Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods: Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion: As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Tratamento Farmacológico da COVID-19 , Anticorpos Neutralizantes/imunologia , Animais , Células HEK293 , Ligação Proteica
3.
J Thromb Haemost ; 20(5): 1256-1270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35108449

RESUMO

BACKGROUND: Osteopontin (OPN) is a multifunctional proinflammatory matricellular protein overexpressed in multiple human cancers and associated with tumor progression and metastases. Thrombin cleavage of OPN reveals a cryptic binding site for α4 ß1 and α9 ß1 integrins. METHODS: Thrombin cleavage-resistant OPNR153A knock-in (OPN-KI) mice were generated and compared to OPN deficient mice (OPN-KO) and wild type (WT) mice in their ability to support growth of melanoma cells. Flow cytometry was used to analyze tumor infiltrating leukocytes. RESULTS: OPN-KI mice engineered with a thrombin cleavage-resistant OPN had reduced B16 melanoma growth and fewer pulmonary metastases than WT mice. The tumor suppression phenotype of the OPN-KI mouse was identical to that observed in OPN-KO mice and was replicated in WT mice by pharmacologic inhibition of thrombin with dabigatran. Tumors isolated from OPN-KI mice had increased tumor-associated macrophages with an altered activation phenotype. Immunodeficient OPN-KI mice (NOG-OPN-KI) or macrophage-depleted OPN-KI mice did not exhibit the tumor suppression phenotype. As B16 cells do not express OPN, thrombin-cleaved fragments of host OPN suppress host antitumor immune response by functionally modulating the tumor-associated macrophages. YUMM3.1 cells, which express OPN, showed less tumor suppression in the OPN-KI and OPN-KO mice than B16 cells, but its growth was suppressed by dabigatran similar to B16 cells. CONCLUSIONS: Thrombin cleavage of OPN, derived from the host and the tumor, initiates OPN's tumor-promoting activity in vivo.


Assuntos
Melanoma Experimental , Trombina , Animais , Adesão Celular/genética , Dabigatrana , Humanos , Camundongos , Osteopontina/química , Osteopontina/genética , Trombina/metabolismo
4.
Thromb Haemost ; 115(3): 580-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607136

RESUMO

Tissue factor pathway inhibitor (TFPI) down-regulates the extrinsic coagulation pathway by inhibiting FXa and FVIIa. Both TFPI and FXa interact with several plasma proteins (e. g. prothrombin, FV/FVa, protein S) and non-proteinaceous compounds (e. g. phospholipids, heparin). It was our aim to investigate effects of ligands that bind to FXa and TFPI on FXa inhibition by full-length TFPI (designated TFPI) and truncated TFPI (TFPI1-150). Inhibition of FXa by TFPI and TFPI1-150 and effects of phospholipids, heparin, prothrombin, FV, FVa, and protein S thereon was quantified from progress curves of conversion of the FXa-specific chromogenic substrate CS11-(65). Low concentrations negatively charged phospholipids (~10 µM) already maximally stimulated (up to 5- to 6-fold) FXa inhibition by TFPI. Unfractionated heparin at concentrations (0.2-1 U/ml) enhanced FXa inhibition by TFPI ~8-fold, but impaired inhibition at concentrations > 1 U/ml. Physiological protein S and FV concentrations both enhanced FXa inhibition by TFPI 2- to 3-fold. In contrast, thrombin-activated FV (FVa) impaired the ability of TFPI to inhibit FXa. FXa inhibition by TFPI1-150 was not affected by FV, FVa, protein S, phospholipids and heparin. TFPI potently inhibited FXa-catalysed prothrombin activation in the absence of FVa, but hardly inhibited prothrombin activation in the presence of thrombin-activated FVa. In conclusion, physiological concentrations TFPI (0.25-0.5 nM TFPI) inhibit FXa with a t1/2 between 3-15 minutes. Direct FXa inhibition by TFPI is modulated by physiological concentrations prothrombin, FV, FVa, protein S, phospholipids and heparin indicating the importance of these modulators for the in vivo anticoagulant activity of TFPI.


Assuntos
Inibidores do Fator Xa/química , Fator Xa/química , Lipoproteínas/química , Coagulação Sanguínea , Catálise , Fator V/química , Fator Va/química , Heparina/química , Heparina de Baixo Peso Molecular/química , Humanos , Ligantes , Fosfolipídeos/química , Polissacarídeos/química , Ligação Proteica , Proteína S/química , Protrombina/química , Proteínas Recombinantes/química , Trombina/química
5.
Thromb Res ; 129 Suppl 2: S23-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22425215

RESUMO

Protein S is an essential anticoagulant protein that acts as a cofactor for full length tissue factor pathway inhibitor (TFPI) and activated protein C (APC) in the down regulation of coagulation. Protein S enhances APC-mediated inactivation of the coagulation factors Va and VIIIa, and it stimulates inhibition of factor (F)Xa by TFPI. Because TFPI is a tight binding, but slow inhibitor of FXa, the TFPI/protein S system fails to regulate FXa generation at high tissue factor/FVIIa concentrations. In this review, we explain how TFPI/protein S can regain its activity at high tissue factor concentrations in the presence of APC, resulting in an intertwinement of TFPI- and APC-cofactor activities of protein S, and making TFPI a major determinant of APC-anticoagulant activity in plasma.


Assuntos
Anticoagulantes/farmacologia , Lipoproteínas/farmacologia , Proteína S/metabolismo , Tromboplastina/antagonistas & inibidores , Animais , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Lipoproteínas/uso terapêutico , Trombina/metabolismo , Tromboplastina/metabolismo
6.
Thromb Haemost ; 108(2): 266-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22627666

RESUMO

Tissue factor pathway inhibitor (TFPI) is a slow tight-binding inhibitor that inhibits factor (F)Xa in a biphasic fashion: a rapid formation of loose FXa·TFPI encounter complex is followed by slow rearrangement into a tight FXa·TFPI* complex in which the Kunitz-2 (K2) domain of TFPI binds and inhibits FXa. In the current study, full-length TFPI (TFPIfl) and various truncated TFPI constructs were used to assess the importance of TFPI domains other than K2 in the inhibition of FXa. In the absence of Ca2+ ions, FXa was more effectively inhibited by TFPIfl than Gla-domain less FXa. In turn, Ca2+ ions impaired FXa inhibition by TFPIfl but not by TFPI constructs that lack the C-terminus. This suggests that, in absence of Ca2+ ions, interactions between the C-terminus of TFPI and the Gla-domain of FXa promote FXa-inhibition. TFPIfl and K2K3 had similar efficiencies for encounter complex formation. However, K2K3 showed monophasic inhibition instead of biphasic inhibition, indicating absence of rearrangement into a tight complex. K1K2 and TFPI1-161 showed biphasic inhibition, but had less efficient encounter complex formation than TFPIfl. Finally, K2K3 was a 10-fold more efficient FXa- inhibitor than K2. These results indicate that K3-C-terminus enhances the formation of encounter complex and that K1 is required for isomerisation of the encounter- into tight complex. Since TFPIfl has a 10-fold higher Ki than K2K3-C-terminus, we propose that K1 is not only required for the transition of the loose to the tight FXa·TFPI* complex, but also inhibits FXa·TFPI encounter complex formation. This inhibitory activity is counteracted by K3 and C-terminus.


Assuntos
Inibidores do Fator Xa , Lipoproteínas/química , Sequência de Aminoácidos , Animais , Anticoagulantes/química , Cálcio/química , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Fator Xa/química , Humanos , Íons , Cinética , Dados de Sequência Molecular , Oxigênio/química , Peptídeos/química , Dobramento de Proteína , Proteína S/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA