Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 223(4635): 485-7, 1984 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-17781443

RESUMO

Lignin-derived phenols dominate the cupric oxide oxidation products of dissolved humic substances from river and lake waters. The relative distributions of these phenols suggest the presence of intact, though oxidized, lignin, which is indicative of the locally dominant vascular plant vegetation. Recognizable lignin is present mostly in humic acid as opposed to fulvic acid fractions. This lignin component represents a source-specific and process-dependent tracer that can uniquely characterize dissolved organic matter.

2.
J Environ Qual ; 48(2): 217-232, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30951132

RESUMO

To study the structure and function of soil organic matter, soil scientists have performed alkali extractions for soil humic acid (HA) and fulvic acid (FA) fractions for more than 200 years. Over the last few decades aquatic scientists have used similar fractions of dissolved organic matter, extracted by resin adsorption followed by alkali desorption. Critics have claimed that alkali-extractable fractions are laboratory artifacts, hence unsuitable for studying natural organic matter structure and function in field conditions. In response, this review first addresses specific conceptual concerns about humic fractions. Then we discuss several case studies in which HA and FA were extracted from soils, waters, and organic materials to address meaningful problems across diverse research settings. Specifically, one case study demonstrated the importance of humic substances for understanding transport and bioavailability of persistent organic pollutants. An understanding of metal binding sites in FA and HA proved essential to accurately model metal ion behavior in soil and water. In landscape-based studies, pesticides were preferentially bound to HA, reducing their mobility. Compost maturity and acceptability of other organic waste for land application were well evaluated by properties of HA extracted from these materials. A young humic fraction helped understand N cycling in paddy rice ( L.) soils, leading to improved rice management. The HA and FA fractions accurately represent natural organic matter across multiple environments, source materials, and research objectives. Studying them can help resolve important scientific and practical issues.


Assuntos
Monitoramento Ambiental , Substâncias Húmicas/análise , Agricultura , Álcalis , Benzopiranos/análise , Água Doce/química , Solo/química
3.
Water Res ; 40(18): 3385-92, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16952387

RESUMO

Reverse osmosis (RO) has proven to be an effective method for the concentration of natural organic matter (NOM) from fresh waters, but an undesirable consequence of this process is the co-concentration of some inorganic solutes. Accordingly, current practice yields solutions of NOM that, upon desalting and freeze-drying, are converted into dry solids containing finely dispersed sulfuric acid and silicic acid (H(4)SiO(4)). These acids will contribute to the apparent carboxylic and phenolic contents of NOM, leading to an overestimation of both. NOM may also be chemically altered by sulfuric acid, which reacts strongly with many classes of organic compounds. The sulfur content and ash content of NOM will be elevated in the presence of sulfuric acid and H(4)SiO(4). The goal of this study is to develop and test a method in which the removal of water by RO is coupled with the removal of salts by electrodialysis (ED). Like RO, ED is a relatively mild treatment that enables the desalting of NOM solutions without subjecting those samples to conditions of extremely high or low pH. The end product of the coupled process is a desalted, concentrated liquid sample from which low-ash NOM can be obtained as a freeze-dried solid material. In this study, the efficacy of ED for desalting NOM is evaluated using concentrated synthetic river waters and actual concentrated (by RO) river waters. Under optimal operating conditions, both sulfate and silica can be largely removed from RO-concentrated solutions of riverine NOM with only an average loss of 3% of total organic carbon.


Assuntos
Água Doce/química , Compostos Orgânicos/química , Purificação da Água , Adsorção , Diálise/métodos , Eletroquímica/métodos , Purificação da Água/métodos
5.
Anal Chem ; 80(23): 8908-19, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19551926

RESUMO

Soils, sediments, freshwaters, and marine waters contain natural organic matter (NOM), an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size-reactivity continuum). NOM is composed mainly of carbon, hydrogen, and oxygen, with minor contributions from heteroatoms such as nitrogen, sulfur, and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulas, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference deltam among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of deltam imposes an ever growing mandatory difference in molecular composition. Molecular formulas that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen, and oxygen. The molecular formulas within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A 100 percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass and H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulas that are observed using six different modes of ionization (APCI, APPI, and ESI in positive and negative modus) imply considerable selectivity of the ionization process and suggest that the observed mass spectra represent simplified projections of still more complex mixtures.


Assuntos
Benzopiranos/análise , Espectrometria de Massas/métodos , Rios/química , Benzopiranos/química , Análise de Fourier , Espectrometria de Massas/instrumentação , Estrutura Molecular
6.
Anal Chem ; 79(3): 1010-21, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17263329

RESUMO

The aromatic region of two-dimensional heteronuclear 1H, 13C NMR spectra of natural organic matter and related materials (e.g., 1H and 13C chemical shifts ranging from approximately 5 to 10 and 80 to 140 ppm, respectively) is highly complex and difficult to interpret using conventional approaches. In principle, this region of the NMR spectrum should be amenable to detailed analysis, because the effects of many common substituents on the chemical shifts of aromatic carbon and hydrogen are well documented. This paper describes the development of a model for prediction of substitution patterns in aromatic rings by increment analysis (SPARIA). In the forward mode, SPARIA is used to predict the chemical shifts of 1H and 13C on aromatic moieties containing every possible combination of eight common substituents that are likely to be representative of substituents on aromatic moieties in natural organic matter. The accuracy of SPARIA in the forward mode is evaluated for 29 aromatic compounds (100 peaks) by comparison of predicted chemical shifts for 1H and 13C with experimental values and with predictions of commercially available software for prediction of NMR spectra. The most important development in this paper is the inverse mode that is built into SPARIA. Given chemical shifts for 1H and 13C (such as may be obtained from a two-dimensional, heteronuclear NMR spectrum), the inverse mode of SPARIA calculates all possible combinations of the eight selected substituents that yield chemical shifts within a specified window of chemical shift for both 1H and 13C. Both the distribution of possible substitution patterns and simple descriptive statistics of the distribution are thus obtained. The inverse mode of SPARIA has been tested on the 29 aromatic compounds (100 peaks) that were used to evaluate its forward mode, and the dependence of the inverse process on the size of the chemical shift window has been evaluated. Finally, the inverse mode of SPARIA has been applied to selected peaks from the two-dimensional heteronuclear HSQC spectrum of a sample of natural organic matter that was isolated by reverse osmosis from the Suwannee River in southeastern Georgia.


Assuntos
Hidrocarbonetos Aromáticos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Georgia , Compostos Orgânicos/análise , Compostos Orgânicos/química , Rios
7.
Anal Bioanal Chem ; 389(5): 1311-27, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17924102

RESUMO

This perspective article provides an assessment of the state-of-the-art in the molecular-resolution analysis of complex organic materials. These materials can be divided into biomolecules in complex mixtures (which are amenable to successful separation into unambiguously defined molecular fractions) and complex nonrepetitive materials (which cannot be purified in the conventional sense because they are even more intricate). Molecular-level analyses of these complex systems critically depend on the integrated use of high-performance separation, high-resolution organic structural spectroscopy and mathematical data treatment. At present, only high-precision frequency-derived data exhibit sufficient resolution to overcome the otherwise common and detrimental effects of intrinsic averaging, which deteriorate spectral resolution to the degree of bulk-level rather than molecular-resolution analysis. High-precision frequency measurements are integral to the two most influential organic structural spectroscopic methods for the investigation of complex materials-NMR spectroscopy (which provides unsurpassed detail on close-range molecular order) and FTICR mass spectrometry (which provides unrivalled resolution)-and they can be translated into isotope-specific molecular-resolution data of unprecedented significance and richness. The quality of this standalone de novo molecular-level resolution data is of unparalleled mechanistic relevance and is sufficient to fundamentally advance our understanding of the structures and functions of complex biomolecular mixtures and nonrepetitive complex materials, such as natural organic matter (NOM), aerosols, and soil, plant and microbial extracts, all of which are currently poorly amenable to meaningful target analysis. The discrete analytical volumetric pixel space that is presently available to describe complex systems (defined by NMR, FT mass spectrometry and separation technologies) is in the range of 10(8-14) voxels, and is therefore capable of providing the necessary detail for a meaningful molecular-level analysis of very complex mixtures. Nonrepetitive complex materials exhibit mass spectral signatures in which the signal intensity often follows the number of chemically feasible isomers. This suggests that even the most strongly resolved FTICR mass spectra of complex materials represent simplified (e.g. isomer-filtered) projections of structural space.


Assuntos
Misturas Complexas/análise , Compostos Orgânicos/análise , Misturas Complexas/química , Estrutura Molecular , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Análise Espectral
8.
Anal Chem ; 76(21): 6327-41, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15516125

RESUMO

The binding of cadmium to Suwannee River natural organic matter (NOM) has been investigated across a broad range of Cd/C ratios (0.00056-0.0056) and pH values (3.5-11) by (113)Cd NMR spectroscopy at two magnetic field strengths (B(0) = 9.4 and 11.7 T). Caused by the very peculiar and highly complex nature of the Cd-NOM exchanging system, these (113)Cd NMR spectra are characterized by a pH- and concentration-dependent superposition of slow, intermediate, and fast chemical exchange. The complex interplay of solution chemistry and chemical exchange requires a thorough mapping of this Cd-NOM chemically exchanging system through NMR acquisition at two magnetic field strengths and a systematic variation of Cd/C ratios and pH values. The interpretation of (113)Cd NMR spectra is greatly facilitated and constrained by simultaneous measurements of pH and pCd, which allows a model-independent calculation of organically bound Cd(2+) under all experimental conditions. Within the range of chemical conditions applied in this study, (113)Cd NMR spectrometric evidence is consistent with coordination of cadmium by oxygen, nitrogen, and sulfur ligands in NOM. Under all experimental conditions, cadmium is primarily coordinated to oxygen; however, several lines of evidence point to the participation of nitrogen ligands, even in acidic solutions where nitrogen ligands are primarily bound to protons. Under alkaline conditions, up to one-third of cadmium may be coordinated to nitrogen, and a small, but unquantifiable, percentage of cadmium is coordinated to sulfur ligands, as evidenced by far-low-field (113)Cd NMR resonances.

9.
Appl Microbiol Biotechnol ; 45(6): 831-8, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8987470

RESUMO

Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.


Assuntos
Monoterpenos , Terpenos/metabolismo , Acetatos/farmacologia , Monoterpenos Acíclicos , Aerobiose , Monoterpenos Bicíclicos , Biodegradação Ambiental , Monoterpenos Cicloexânicos , Cicloexenos , Glucose/farmacologia , Limoneno , Estrutura Molecular , Microbiologia do Solo , Microbiologia da Água
10.
Environ Sci Technol ; 36(20): 4334-45, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12387406

RESUMO

Aquatic humic substances (HS) from a bog lake water, a riverwater, and a groundwater were isolated after enrichment on XAD 8 columns and added to a Czapek-Dox nutrient broth which was used either in full strength or without glucose and/or NaNO3. The individual flasks were inoculated with natural microbial populations of corresponding water samples or with a Pseudomonas fluorescens strain isolated from groundwater. The presence of HS resulted in an increase of bacterial numbers in nearly all cultures incubated for 3 weeks at 25 degrees C on a shaker. HS reisolated from cultures without glucose or NaNO3 showed no or only minor quantitative differences as compared to those from sterile controls. In full strength nutrient broth up to 27% of HS were utilized. Data obtained by spectroscopic methods (UV/vis/FTIR) and elemental analysis indicated a decrease in particle size and a loss in aromaticity and aliphatic carbon in HS reisolated from the microbial cultures. Simultaneously an increase in the N content of HS was observed, which probably originated from some constituents of microbial biomass such as proteins and amino sugars. The NMR data also documented that significant transformations of HS occurred in the individual microbial cultures. After incubation, increased amounts of aromatic acids were detected in some liquid media and residual HS by GC/MS or capillary electrophoresis. 1H NMR spectroscopy was less effective in indicating structural differences in the HS than 13C NMR but revealed considerable detail of the microbial degradation of riverine HS, when limited sample was available. The newly developed NMR increment analysis provided substantial detail of aromatic structures in a microbially altered HS. The microbial degradation of HS strongly depended on the composition of the HS, the species selection of the microorganisms, and to a lesser extent on the culture conditions. For any series of identical inoculum and HS, full broth media initiated the most extensive alteration of HS.


Assuntos
Substâncias Húmicas/metabolismo , Microbiologia da Água , Poluentes da Água/metabolismo , Disponibilidade Biológica , Espectroscopia de Ressonância Magnética , Pseudomonas fluorescens/fisiologia
11.
14.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA