Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Mater Sci Mater Med ; 28(1): 6, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27885573

RESUMO

Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.


Assuntos
Colágeno Tipo II/química , Colágeno/química , Degeneração do Disco Intervertebral/terapia , Nanocompostos/química , Ácido Poliglutâmico/análogos & derivados , Animais , Bovinos , Células Cultivadas , Quitosana/química , Condrócitos/citologia , DNA/química , Ácido Glutâmico/química , Glicosaminoglicanos/química , Humanos , Concentração de Íons de Hidrogênio , Disco Intervertebral/cirurgia , Luz , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Transmissão , Nanotecnologia , Ácido Poliglutâmico/química , Polímeros/química , Regeneração , Espalhamento de Radiação , Eletricidade Estática
2.
Adv Healthc Mater ; : e2400496, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850170

RESUMO

Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis progression. Here, we 4D-bioprint a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) to locally mitigate inflammation and impair nerve sprouting. Under in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1ß and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo assessments utilizing the air pouch mouse model affirmed the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretome did not elicit a systemic immune response and decreases locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases, when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome had no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field. This article is protected by copyright. All rights reserved.

3.
Mater Today Bio ; 21: 100691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37455815

RESUMO

Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.

4.
J Mater Sci Mater Med ; 23(7): 1583-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532096

RESUMO

The remarkable properties of poly-aminoacids, mainly their biocompatibility and biodegradability, have prompted an increasing interest in these polymers for biomedical applications. Poly-γ-glutamic acid (γ-PGA) is one of the most interesting poly-aminoacids with potential applications as a biomaterial. Here we describe the production and characterization of γ-PGA by Bacillus subtilis natto. The γ-PGA was produced with low molecular weight (10-50 kDa), high purity grade (>99 %) and a D: -/L: -glutamate ratio of 50-60/50-40 %. To evaluate the feasibility of using this γ-PGA as a biomaterial, chitosan (Ch)/γ-PGA nanoparticles were prepared by the coacervation method at pH ranging from 3.0 to 5.0, with dimensions in the interval 214-221 nm with a poly-dispersion index of ca. 0.2. The high purity of γ-PGA produced by this method, which is firstly described here, renders this biopolymer suitable for biomedical applications. Moreover, the Ch/γ-PGA nanocomplexes developed in this investigation can be combined with biologically active substances for their delivery in the organism. The fact that the assembly between Ch and γ-PGA relies on electrostatic interactions enables addition of other molecules that can be released into the medium through changes from acidic to physiological pH, without loss in biological activity.


Assuntos
Materiais Biocompatíveis , Ácido Poliglutâmico/análogos & derivados , Bacillus subtilis/metabolismo , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Ácido Poliglutâmico/química , Ácido Poliglutâmico/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
5.
Expert Opin Drug Discov ; 17(6): 569-580, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343351

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is one of the most common and deadly tumors worldwide. CRC in vitro and in vivo models that recapitulate key features of human disease are essential to the development of novel and effective therapeutics. However, two-dimensional (2D) in vitro culture systems are considered too simple and do not represent the complex nature of the human tumor. However, three-dimensional (3D) models have emerged in recent years as more advanced and complex cell culture systems, able to closely resemble key features of human cancer tissues. AREAS COVERED: The authors' review the currently established in vitro cell culture models and describe the advances in the development of 3D scaffold-free models to study CRC. The authors also discuss intestinal spheroids and organoids. As well as in vitro models for drug screening and metastatic CRC (mCRC). EXPERT OPINION: The ideal CRC in vitro model is not yet established. Spheroid-based 3D models represent one of the most used approaches to recapitulate the tumor environment, overcoming some limitations of 2D models. Mouse and patient-derived organoids are more advanced models that can mimic more closely the characteristics and properties of CRC, with the possibility of including cells derived from patients with metastatic CRC.


Assuntos
Neoplasias Colorretais , Organoides , Animais , Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Esferoides Celulares
6.
Bioact Mater ; 12: 169-184, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35310387

RESUMO

The effective osteointegration of orthopedic implants is a key factor for the success of orthopedic surgery. However, local metabolic imbalance around implants under osteoporosis condition could jeopardize the fixation effect. Inspired by the bone structure and the composition around implants under osteoporosis condition, alendronate (A) was grafted onto methacryloyl hyaluronic acid (H) by activating the carboxyl group of methacryloyl hyaluronic acid to be bonded to inorganic calcium phosphate on trabecular bone, which is then integrated with aminated bioactive glass (AB) modified by oxidized dextran (O) for further adhesion to organic collagen on the trabecular bone. The hybrid hydrogel could be solidified on cancellous bone in situ under UV irradiation and exhibits dual adhesion to organic collagen and inorganic apatite, promoting osteointegration of orthopedic implants, resulting in firm stabilization of the implants in cancellous bone areas. In vitro, the hydrogel was evidenced to promote osteogenic differentiation of embryonic mouse osteoblast precursor cells (MC3T3-E1) as well as inhibit the receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclast differentiation of macrophages, leading to the upregulation of osteogenic-related gene and protein expression. In a rat osteoporosis model, the bone-implant contact (BIC) of the hybrid hydrogel group increased by 2.77, which is directly linked to improved mechanical stability of the orthopedic implants. Overall, this organic-inorganic, dual-adhesive hydrogel could be a promising candidate for enhancing the stability of orthopedic implants under osteoporotic conditions.

7.
Biomacromolecules ; 12(12): 4183-95, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22032302

RESUMO

Chitosan (Ch) is a nontoxic and biocompatible polysaccharide extensively used in biomedical applications. Ch, as a polycation, can be combined with anionic polymers by layer-by-layer (LbL) self-assembly, giving rise to multilayered complexed architectures. These structures can be used in tissue engineering strategies, as drug delivery systems, or artificial matrices mimicking the extracellular microenvironment. In this work, Ch was combined with poly(γ-glutamic acid) (γ-PGA). γ-PGA is a polyanion, which was microbially produced, and is known for its low immunogenic reaction and low cytotoxicity. Multilayered ultrathin films were assembled by LbL, with a maximum of six layers. The interaction between both polymers was analyzed by: ellipsometry, quartz crystal microbalance with dissipation, Fourier transform infrared spectroscopy, atomic force microscopy, and zeta potential measurements. Ch/γ-PGA polyelectrolyte multilayers (PEMs) revealed no cytotoxicity according to ISO 10993-5. Overall, this study demonstrates that Ch can interact electrostatically with γ-PGA forming multilayered films. Furthermore, this study provides a comprehensive characterization of Ch/γ-PGA PEM structures, elucidating the contribution of each layer for the nanostructured films. These model surfaces can be useful substrates to study cell-biomaterial interactions in tissue regeneration.


Assuntos
Quitosana/metabolismo , Eletrólitos/síntese química , Ácido Poliglutâmico/análogos & derivados , Materiais Biocompatíveis/química , Quitosana/análise , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Eletrólitos/análise , Eletrólitos/química , Microscopia de Força Atômica , Modelos Moleculares , Ácido Poliglutâmico/análise , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/metabolismo , Engenharia Tecidual/métodos , Substâncias Viscoelásticas/análise , Substâncias Viscoelásticas/química
8.
Adv Drug Deliv Rev ; 170: 312-339, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32946921

RESUMO

Although nanocarriers offer many advantages as drug delivery systems, their poor stability in circulation, premature drug release and nonspecific uptake in non-target organs have prompted biomimetic approaches using natural cell membranes to camouflage nanovehicles. Among them, erythrocytes, representing the most abundant blood circulating cells, have been extensively investigated for biomimetic coating on artificial nanocarriers due to their upgraded biocompatibility, biodegradability, non-immunogenicity and long-term blood circulation. Due to the cell surface mimetic properties combined with customized core material, erythrocyte-mimicking nanovehicles (EM-NVs) have a wide variety of applications, including drug delivery, imaging, phototherapy, immunomodulation, sensing and detection, that foresee a huge potential for therapeutic and diagnostic applications in several diseases. In this review, we summarize the recent advances in the biomedical applications of EM-NVs in cancer, infection, heart-, autoimmune- and CNS-related disorders and discuss the major challenges and opportunities in this research area.


Assuntos
Sistemas de Liberação de Medicamentos , Eritrócitos/metabolismo , Nanopartículas/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Eritrócitos/química , Humanos , Nanopartículas/química
9.
Spine (Phila Pa 1976) ; 43(12): E673-E682, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29189572

RESUMO

STUDY DESIGN: Ex vivo experimental study. OBJECTIVE: To investigate the effect of proinflammatory/degenerative intervertebral disc (IVD) microenvironment on the regenerative and immunomodulatory behavior of mesenchymal stem/stromal cells (MSCs), using an ex vivo model from bovine origin. SUMMARY OF BACKGROUND DATA: Low back pain is a cause of disability worldwide, most frequently associated with IVD degeneration and inflammation, and characterized by increased levels of inflammatory mediators, often disregarded. MSC-based therapies to low back pain have been advocated, but the involvement of inflammation in IVD remodeling mechanism, promoted by MSCs has not yet been explored. METHODS: Bovine IVD organ cultures of nucleus pulposus punches were stimulated with needle puncture and culture medium supplementation with 10 ng/mL of interleukin (IL)-1ß, to induce a proinflammatory/degenerative environment, as previously established. Human bone marrow-derived MSCs were cultured on top of transwells, placed above nucleus pulposus punches, for up to 16 days. MSCs were analyzed by screening cell viability/apoptosis, metabolic activity, migration, and inflammatory cytokines production in response to the proinflammatory environment. IVD extracellular matrix (ECM) remodeling, gene expression profile of IVD cells, and inflammatory cytokine profile in the presence of MSCs in basal versus proinflammatory conditions were also evaluated. RESULTS: Proinflammatory/degenerative IVD conditions did not affect MSCs viability, but promoted cell migration, while increasing IL-6, IL-8, monocyte chemoattractant protein-1, and prostaglandin E2 and reducing transforming growth factor-ß1 production by MSCs. MSCs did not stimulate ECM production (namely type II collagen or aggrecan) in neither basal nor inflammatory conditions, instead MSCs downregulated bovine proinflammatory IL-6, IL-8, and TNF-α gene expression levels in IL-1ß-stimulated IVDs. CONCLUSION: The present study provides evidence for an immunomodulatory paracrine effect of MSCs in degenerated IVD without an apparent effect in ECM remodeling, and suggest an MSCs mechanism-of-action dependent on a cytokine feedback loop. LEVEL OF EVIDENCE: 5.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Bovinos , Humanos , Núcleo Pulposo/metabolismo
10.
Sci Rep ; 6: 33836, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27652931

RESUMO

Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks. hMSCs migrated from CEP towards the lesion area and significantly increased expression of collagen type II and aggrecan in IVD, namely in the nucleus pulposus. Concomitantly, hMSCs stimulated the production of growth factors, promoters of ECM synthesis, such as fibroblast growth factor 6 (FGF-6) and 7 (FGF-7), platelet-derived growth factor receptor (PDGF-R), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 receptor (IGF-1sR). Overall, our results demonstrate that CEP can be an alternative route to MSC-based therapies for IVD regeneration through ECM remodeling, thus opening new perspectives on endogenous repair capacity through MSC recruitment.

11.
Tissue Eng Part C Methods ; 22(1): 8-19, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26565141

RESUMO

Resolution of intervertebral disc (IVD) degeneration-associated inflammation is a prerequisite for tissue regeneration and could possibly be achieved by strategies ranging from pharmacological to cell-based therapies. In this study, a proinflammatory disc organ culture model was established. Bovine caudal disc punches were needle punctured and additionally stimulated with lipopolysaccharide (10 µg/mL) or interleukin-1ß (IL-1ß, 10-100 ng/mL) for 48 h. Two intradiscal therapeutic approaches were tested: (i) a nonsteroidal anti-inflammatory drug, diclofenac (Df) and (ii) human mesenchymal stem/stromal cells (MSCs) embedded in an albumin/hyaluronan hydrogel. IL-1ß-treated disc organ cultures showed a statistically significant upregulation of proinflammatory markers (IL-6, IL-8, prostaglandin E2 [PGE2]) and metalloproteases (MMP1, MMP3) expression, while extracellular matrix (ECM) proteins (collagen II, aggrecan) were significantly downregulated. The injection of the anti-inflammatory drug, Df, was able to reduce the levels of proinflammatory cytokines and MMPs and surprisingly increase ECM protein levels. These results point the intradiscal application of anti-inflammatory drugs as promising therapeutics for disc degeneration. In parallel, the immunomodulatory role of MSCs on this model was also evaluated. Although a slight downregulation of IL-6 and IL-8 expression could be found, the variability among the five donors tested was high, suggesting that the beneficial effect of these cells on disc degeneration needs to be further evaluated. The proinflammatory/degenerative IVD organ culture model established can be considered a suitable approach for testing novel therapeutic drugs, thus reducing the number of animals in in vivo experimentation. Moreover, this model can be used to address the cellular and molecular mechanisms that regulate inflammation in the IVD and their implications in tissue degeneration.


Assuntos
Diclofenaco/administração & dosagem , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/crescimento & desenvolvimento , Transplante de Células-Tronco Mesenquimais/métodos , Técnicas de Cultura de Órgãos/instrumentação , Animais , Anti-Inflamatórios/administração & dosagem , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Técnicas In Vitro , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/induzido quimicamente , Degeneração do Disco Intervertebral/imunologia , Lipopolissacarídeos , Técnicas de Cultura de Órgãos/métodos , Suínos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Resultado do Tratamento
12.
Oncotarget ; 7(32): 52003-52016, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27409830

RESUMO

Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches.


Assuntos
Carcinoma Papilar/patologia , Osteopontina/metabolismo , Neoplasias da Glândula Tireoide/patologia , Humanos , Invasividade Neoplásica/patologia , Isoformas de Proteínas/metabolismo , Câncer Papilífero da Tireoide
13.
Tissue Eng Part A ; 21(11-12): 1869-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25760236

RESUMO

Cartilage damage and/or aging effects can cause constant pain, which limits the patient's quality of life. Although different strategies have been proposed to enhance the limited regenerative capacity of cartilage tissue, the full production of native and functional cartilaginous extracellular matrix (ECM) has not yet been achieved. Poly(γ-glutamic acid) (γ-PGA), a naturally occurring polyamino acid, biodegradable into glutamate residues, has been explored for tissue regeneration. In this work, γ-PGA's ability to support the production of cartilaginous ECM by human bone marrow mesenchymal stem/stromal cells (MSCs) and nasal chondrocytes (NCs) was investigated. MSC and NC pellets were cultured in basal medium (BM), chondrogenic medium (CM), and CM-γ-PGA-supplemented medium (CM+γ-PGA) over a period of 21 days. Pellet size/shape was monitored with time. At 14 and 21 days of culture, the presence of sulfated glycosaminoglycans (sGAGs), type II collagen (Col II), Sox-9, aggrecan, type XI collagen (Col XI), type X collagen (Col X), calcium deposits, and type I collagen (Col I) was analyzed. After excluding γ-PGA's cytotoxicity, earlier cell condensation, higher sGAG content, Col II, Sox-9 (day 14), aggrecan, and Col X (day 14) production was observed in γ-PGA-supplemented MSC cultures, with no signs of mineralization or Col I. These effects were not evident with NCs. However, Sox-9 (at day 14) and Col X (at days 14 and 21) were increased, decreased, or absent, respectively. Overall, γ-PGA improved chondrogenic differentiation of MSCs, increasing ECM production earlier in culture. It is proposed that γ-PGA incorporation in novel biomaterials has a beneficial impact on future approaches for cartilage regeneration.


Assuntos
Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Ácido Poliglutâmico/análogos & derivados , Células Estromais/efeitos dos fármacos , Agrecanas/metabolismo , Cálcio/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Condrócitos/citologia , Colágeno/metabolismo , Meios de Cultura/farmacologia , Meios de Cultivo Condicionados/química , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Cartilagens Nasais/citologia , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/toxicidade , Fatores de Transcrição SOX9/metabolismo , Células Estromais/citologia , Fator de Crescimento Transformador beta1/metabolismo
14.
Biomaterials ; 35(28): 8144-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969636

RESUMO

Intervertebral disc (IVD) degeneration is the leading cause of low back pain and disability in the active population. Transplantation of mesenchymal stem cells (MSCs) in a hydrogel carrier can induce regenerative effects in degenerated IVDs. Moreover, it was found that degenerative discs release chemoattractants effective in MSC recruitment. Based on these findings, we hypothesized that an injectable hydrogel that can enhance the number of migrated MSCs in the IVD and provide a suitable matrix for their survival and differentiation would be ideal. The purpose of this study was to evaluate the potential of a thermoreversible hyaluronan-poly(N-isopropylacrylamide) (HAP) hydrogel as chemoattractant delivery system to recruit human MSCs in degenerative IVDs. The results demonstrate that HAP hydrogels containing stromal cell derived factor-1 (SDF-1) significantly increased the number of MSCs migrating into nucleotomized discs compared with discs treated with only HAP or SDF-1 in solution. HAP hydrogels releasing SDF-1 enhanced both the number of recruited cells and their migration distance in the IVD tissue. Furthermore, this phenomenon was dependent on MSC donor age. In conclusion, HAP SDF-1 is effective for the recruitment of stem cells in the IVD, thus opening new possibilities for the development of regenerative therapies based on endogenous cell migration.


Assuntos
Acrilamidas/química , Quimiocina CXCL12/metabolismo , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Degeneração do Disco Intervertebral/metabolismo , Células-Tronco Mesenquimais/citologia , Acrilamida/química , Animais , Células da Medula Óssea/citologia , Cartilagem/patologia , Bovinos , Movimento Celular , Células Cultivadas , Fatores Quimiotáticos/química , Humanos , Hidrogéis/química , Imuno-Histoquímica , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA