Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 101: 105938, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243830

RESUMO

While many plastic additives show endocrine disrupting properties, this has not been studied for micro- and nanoplastics (MNPs) particles despite their ubiquitous presence in humans. The objective of this study was to determine the effects of various sizes and concentrations of polystyrene (PS)-MNPs (50-10,000 nm, 0.01-100 µg/mL) on estrogen- and androgen receptor (ER and AR) activity and steroidogenesis in vitro. Fluorescent (F)PS-MNPs of ≤1000 nm were internalized in VM7 and H295R cells and FPS-MNPs ≤200 nm in AR-ecoscreen cells. H295R cells displayed the highest uptake and particles were closer to the nucleus than other cell types. None of the sizes and concentrations PS-MNPs tested affected ER or AR activity. In H295R cells, PS-MNPs caused some statistically significant changes in hormone levels, though these showed no apparent concentration or size-dependent patterns. Additionally, PS-MNPs caused a decrease in estriol (E3) with a maximum of 37.5 % (100 µg/mL, 50 nm) and an increase in gene expression of oxidative stress markers GPX1 (1.26-fold) and SOD1 (1.23-fold). Taken together, our data show limited endocrine-disrupting properties of PS-MNPs in vitro. Nevertheless the importance of E3 in the placenta warrants further studies in the potential effects of MNPs during pregnancy.

2.
Toxicon X ; 22: 100197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633504

RESUMO

Snakebite envenoming is a global health issue that affects millions of people worldwide, and that causes morbidity rates surpassing 450,000 individuals annually. Patients suffering from snakebite morbidities may experience permanent disabilities such as pain, blindness and amputations. The (local) tissue damage that causes these life-long morbidities is the result of cell- and tissue-damaging toxins present in the venoms. These compounds belong to a variety of toxin classes and may affect cells in various ways, for example, by affecting the cell membrane. In this study, we have developed a high-throughput in vitro assay that can be used to study membrane disruption caused by snake venoms using phospholipid vesicles from egg yolk as a substrate. Resuspended chicken egg yolk was used to form these vesicles, which were fluorescently stained to allow monitoring of the degradation of egg yolk vesicles on a plate reader. The assay proved to be suitable for studying phospholipid vesicle degradation of crude venoms and was also tested for its applicability for neutralisation studies of varespladib, which is a PLA2 inhibitor. We additionally made an effort to identify the responsible toxins using liquid chromatography, followed by post-column bioassaying and protein identification using high-throughput venomics. We successfully identified various toxins in the venoms of C. rhodostoma and N. mossambica, which are likely to be involved in the observed vesicle-degrading effect. This indicates that the assay can be used for screening the membrane degrading activity of both crude and fractionated venoms as well as for neutralisation studies.

3.
Plant Physiol ; 143(2): 670-83, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17172288

RESUMO

This study describes the identification of over 150 target proteins of the five 14-3-3 isoforms in 7-d-old barley (Hordeum vulgare) cv Himalaya seedlings using yeast two-hybrid screens complemented with 14-3-3 protein affinity purification and tandem mass spectrometry. Independent experiments for a subset of genes confirmed the yeast two-hybrid interactions, demonstrating a low false positive identification rate. These combined approaches resulted in the identification of more than 150 putative targets; 15% were previously reported to be 14-3-3 interactors, including, for example, Serpin, RF2A, WPK4 kinase, P-type proton-translocating adenosine triphosphatase, EF1A, glutamine synthetase, and invertases. The affinity purification resulted in 30 interactors, of which 44% function in metabolism, while the yeast two-hybrid screens identified 132 different proteins, with 35% of the proteins involved in signal transduction. A number of proteins have a well-described function in hormonal signaling, such as the auxin transport protein PIN1 and NPH3 and components of the brassinosteroid pathway, such as the receptor kinase BAK1 (OsPERK1) and BRI1-kinase domain-interacting protein 129. However, 14-3-3 interactions with these signal mediators have not been confirmed in the affinity purification. Confirmations of the 14-3-3 interaction with the three ABF-like transcription factors are shown using far western analysis. Also, a REPRESSION OF SHOOT GROWTH ortholog named RF2A was identified; these transcription factors play important roles in the abscisic acid and gibberellin pathways, respectively. We speculate that 14-3-3 proteins have a role in cross talk between these hormonal pathways. The specificity and complementary nature of both the affinity purification and the yeast two-hybrid approaches is discussed.


Assuntos
Proteínas 14-3-3/metabolismo , Hordeum/metabolismo , Folhas de Planta/metabolismo , Proteômica , Técnicas do Sistema de Duplo-Híbrido , Proteínas 14-3-3/genética , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Isoformas de Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA