Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurooncol ; 170(1): 185-198, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39044115

RESUMO

PURPOSE: The objective of this prospective, single-centre case series was to investigate feasibility, clinical outcomes, and neural correlates of non-invasive Neuromodulation-Induced Cortical Prehabilitation (NICP) before brain tumor surgery. Previous studies have shown that gross total resection is paramount to increase life expectancy but is counterbalanced by the need of preserving critical functional areas. NICP aims at expanding functional margins for extensive tumor resection without functional sequelae. Invasive NICP (intracranial neuromodulation) was effective but characterized by elevated costs and high rate of adverse events. Non-invasive NICP (transcranial neuromodulation) may represent a more feasible alternative. Nonetheless, up to this point, non-invasive NICP has been examined in only two case reports, yielding inconclusive findings. METHODS: Treatment sessions consisted of non-invasive neuromodulation, to transiently deactivate critical areas adjacent to the lesion, coupled with intensive functional training, to activate alternative nodes within the same functional network. Patients were evaluated pre-NICP, post-NICP, and at follow-up post-surgery. RESULTS: Ten patients performed the intervention. Feasibility criteria were met (retention, adherence, safety, and patient's satisfaction). Clinical outcomes showed overall stability and improvements in motor and executive function from pre- to post-NICP, and at follow-up. Relevant plasticity changes (increase in the distance between tumor and critical area) were observed when the neuromodulation target was guided by functional neuroimaging data. CONCLUSION: This is the first case series demonstrating feasibility of non-invasive NICP. Neural correlates indicate that neuroimaging-guided target selection may represent a valid strategy to leverage neuroplastic changes before neurosurgery. Further investigations are needed to confirm such preliminary findings.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Prospectivos , Idoso , Plasticidade Neuronal/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/cirurgia , Cuidados Pré-Operatórios/métodos , Estudos de Viabilidade , Seguimentos , Exercício Pré-Operatório , Procedimentos Neurocirúrgicos/métodos
2.
Brain Topogr ; 34(1): 1-5, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141335

RESUMO

Interhemispheric inhibition (IHI) is a dual-site TMS protocol measuring inhibitory interactions between the primary motor cortices (M1). IHI is performed by applying an initial conditioning stimulus followed by a test stimulus to the contralateral M1. Conventionally, the response in the contralateral hand to the conditioning TMS pulse is either not measured, or discarded. The aim of this experiment was to investigate whether MEPs evoked from these conditioning stimuli can be utilised as non-conditioned, or 'baseline', responses, and therefore expedite IHI data collection. We evaluated short-latency (10 ms) and long-latency (40 ms) IHI bidirectionally in 14 healthy participants. There was no difference in MEP amplitudes evoked by conventional single TMS pulses randomly inserted into IHI blocks, and those evoked by the conditioning stimulus. Nor was there any significant difference in IHI magnitude when using single pulse MEPs or conditioning stimulus MEPs as baseline responses. The utilisation of conditioning stimuli dispenses with the need to insert dedicated single TMS pulses into IHI blocks, allowing for additional IHI data to be collected in the same amount of time.


Assuntos
Potencial Evocado Motor , Estimulação Magnética Transcraniana , Eletromiografia , Lateralidade Funcional , Humanos , Músculo Esquelético , Inibição Neural
3.
Mov Disord ; 34(12): 1873-1881, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31603570

RESUMO

BACKGROUND: Demographic and clinical studies imply that female sex may be protective for PD, but pathophysiological evidence to support these observations is missing. In early PD, functional changes may be detected in primary motor cortex using transcranial magnetic stimulation. OBJECTIVE: We hypothesised that if pathophysiology differs between sexes in PD, this will be reflected in differences of motor cortex measurements. METHODS: Forty-one newly diagnosed PD patients (22 males, 19 females) were clinically assessed using MDS-UPDRS part III, and various measures of cortical excitability and sensorimotor cortex plasticity were measured over both hemispheres, corresponding to the less and more affected side, using transcranial magnetic stimulation. Twenty-three healthy (10 men, 13 women) participants were studied for comparison. RESULTS: Among patients, no significant differences between sexes were found in age, age of diagnosis, symptom duration, and total or lateralized motor score. However, male patients had disturbed interhemispheric balance of motor thresholds, caused by decreased resting and active motor thresholds in the more affected hemisphere. Short interval intracortical inhibition was more effective in female compared to male patients in both hemispheres. Female patients had a preserved physiological focal response to sensorimotor plasticity protocol, whereas male patients showed an abnormal spread of the protocol effect. CONCLUSION: The study provides one of the first neurophysiological evidences of sex differences in early PD. Female patients have a more favorable profile of transcranial magnetic stimulation measures, possibly reflecting a more successful cortical compensation or delayed maladaptive changes in the sensorimotor cortex. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson/fisiopatologia , Estimulação Magnética Transcraniana , Idoso , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Lateralidade Funcional , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Plasticidade Neuronal , Caracteres Sexuais , Córtex Somatossensorial/fisiopatologia
4.
Eur J Neurosci ; 48(4): 1990-2000, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022548

RESUMO

Despite accumulating evidence of inter and intraindividual variability in response to theta burst stimulation, it is widely believed that in therapeutic applications, repeated sessions can have a "build-up" effect that increases the response over and above that seen in a single session. However, strong evidence for this is lacking. Therefore, we examined whether daily administration of intermittent theta burst stimulation (iTBS) over the primary motor cortex induces cumulative changes in transcranial magnetic stimulation measures of cortical excitability, above the changes induced by sham stimulation. Over five consecutive days, 20 healthy participants received either active iTBS or sham stimulation. Each day, baseline measures of cortical excitability were assessed before and up to 30 min after the intervention. There was no significant difference in the rate of response between iTBS and sham stimulation on any of the 5 days. There was no iTBS specific cumulative increase of corticospinal excitability. The likelihood that an individual would remain a responder from day-to-day was low in both groups, implying high within-subject variability of both active and sham iTBS after-effects. In contrast, we found a high within-subject repeatability of resting and active motor threshold, and baseline motor-evoked potential amplitude. In summary, sham stimulation has similar effect to active iTBS on corticospinal excitability, even when applied repeatedly for 5 days. Our results might be relevant to research and clinical applications of theta burst stimulation protocols.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Placebos , Tratos Piramidais/fisiologia , Adulto Jovem
5.
Front Aging Neurosci ; 16: 1441359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193493

RESUMO

Introduction: Individuals with subjective cognitive decline (SCD) express concern about self-perceived cognitive decline despite no objective impairment and are at higher risk of developing Alzheimer's disease. Despite documented links between SCD and repetitive negative thinking (RNT), the specific impact of RNT on brain integrity and cognition in exacerbating the SCD condition remains unclear. We aimed to investigate the influence of RNT on global cognition and brain integrity, and their interrelationships among healthy middle-aged and older adults experiencing SCD. Methods: Out of 616 individuals with neuroimaging and neuropsychological data available, 89 (mean age = 56.18 years; 68.54% females) met SCD criteria. Eighty-nine non-SCD individuals matched by age, sex, and education were also selected and represented the control group (mean age = 56.09 years; 68.54% females). Global cognition was measured using the preclinical Alzheimer's cognitive composite (PACC5), which includes dementia screening, episodic memory, processing speed, and category fluency tests. RNT was calculated through three questionnaires assessing intrusive thoughts, persistent worry, and rumination. We generated cortical thickness (CTh) maps and quantified the volume of white matter lesions (WML) in the whole brain, as grey and white matter integrity measures, respectively. Results: SCD individuals exhibited higher RNT scores, and thinner right temporal cortex compared to controls. No differences were observed in PACC5 and WML burden between groups. Only the SCD group demonstrated positive associations in the CTh-PACC5, CTh-RNT, and WML-RNT relationships. Discussion: In this cross-sectional study, RNT was exclusively associated with brain integrity in SCD. Even though our findings align with the broader importance of investigating treatable psychological factors in SCD, further research may reveal a modulatory effect of RNT on the relationship between cognition and brain integrity in SCD.

6.
Front Oncol ; 14: 1390542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826790

RESUMO

Primary brain neoplasms are associated with elevated mortality and morbidity rates. Brain tumour surgery aims to achieve maximal tumour resection while minimizing damage to healthy brain tissue. Research on Neuromodulation Induced Cortical Prehabilitation (NICP) has highlighted the potential, before neurosurgery, of establishing new brain connections and transfer functional activity from one area of the brain to another. Nonetheless, the neural mechanisms underlying these processes, particularly in the context of space-occupying lesions, remain unclear. A patient with a left frontotemporoinsular tumour underwent a prehabilitation protocol providing 20 sessions of inhibitory non-invasive neuromodulation (rTMS and multichannel tDCS) over a language network coupled with intensive task training. Prehabilitation resulted in an increment of the distance between the tumour and the language network. Furthermore, enhanced functional connectivity within the language circuit was observed. The present innovative case-study exposed that inhibition of the functional network area surrounding the space-occupying lesion promotes a plastic change in the network's spatial organization, presumably through the establishment of novel functional pathways away from the lesion's site. While these outcomes are promising, prudence dictates the need for larger studies to confirm and generalize these findings.

7.
Front Hum Neurosci ; 17: 1168673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333833

RESUMO

Background: Over 55 million people worldwide are currently diagnosed with Alzheimer's disease (AD) and live with debilitating episodic memory deficits. Current pharmacological treatments have limited efficacy. Recently, transcranial alternating current stimulation (tACS) has shown memory improvement in AD by normalizing high-frequency neuronal activity. Here we investigate the feasibility, safety, and preliminary effects on episodic memory of an innovative protocol where tACS is administered within the homes of older adults with AD with the help of a study companion (HB-tACS). Methods: Eight participants diagnosed with AD underwent multiple consecutive sessions of high-definition HB-tACS (40 Hz, 20-min) targeting the left angular gyrus (AG), a key node of the memory network. The Acute Phase comprised 14-weeks of HB-tACS with at least five sessions per week. Three participants underwent resting state electroencephalography (EEG) before and after the 14-week Acute Phase. Subsequently, participants completed a 2-3-month Hiatus Phase not receiving HB-tACS. Finally, in the Taper phase, participants received 2-3 sessions per week over 3-months. Primary outcomes were safety, as determined by the reporting of side effects and adverse events, and feasibility, as determined by adherence and compliance with the study protocol. Primary clinical outcomes were memory and global cognition, measured with the Memory Index Score (MIS) and Montreal Cognitive Assessment (MoCA), respectively. Secondary outcome was EEG theta/gamma ratio. Results reported as mean ± SD. Results: All participants completed the study, with an average of 97 HB-tACS sessions completed by each participant; reporting mild side effects during 25% of sessions, moderate during 5%, and severe during 1%. Acute Phase adherence was 98 ± 6.8% and Taper phase was 125 ± 22.3% (rates over 100% indicates participants completed more than the minimum of 2/week). After the Acute Phase, all participants showed memory improvement, MIS of 7.25 ± 3.77, sustained during Hiatus 7.00 ± 4.90 and Taper 4.63 ± 2.39 Phases compared to baseline. For the three participants that underwent EEG, a decreased theta/gamma ratio in AG was observed. Conversely, participants did not show improvement in the MoCA, 1.13 ± 3.80 after the Acute Phase, and there was a modest decrease during the Hiatus -0.64 ± 3.28 and Taper -2.56 ± 5.03 Phases. Conclusion: This pilot study shows that the home-based, remotely-supervised, study companion administered, multi-channel tACS protocol for older adults with AD was feasible and safe. Further, targeting the left AG, memory in this sample was improved. These are preliminary results that warrant larger more definite trials to further elucidate tolerability and efficacy of the HB-tACS intervention. NCT04783350. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04783350?term=NCT04783350&draw=2&rank=1, identifier NCT04783350.

8.
Front Psychiatry ; 14: 1205119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817830

RESUMO

Introduction: Patients with schizophrenia typically exhibit deficits in working memory (WM) associated with abnormalities in brain activity. Alterations in the encoding, maintenance and retrieval phases of sequential WM tasks are well established. However, due to the heterogeneity of symptoms and complexity of its neurophysiological underpinnings, differential diagnosis remains a challenge. We conducted an electroencephalographic (EEG) study during a visual WM task in fifteen schizophrenia patients and fifteen healthy controls. We hypothesized that EEG abnormalities during the task could be identified, and patients successfully classified by an interpretable machine learning algorithm. Methods: We tested a custom dense attention network (DAN) machine learning model to discriminate patients from control subjects and compared its performance with simpler and more commonly used machine learning models. Additionally, we analyzed behavioral performance, event-related EEG potentials, and time-frequency representations of the evoked responses to further characterize abnormalities in patients during WM. Results: The DAN model was significantly accurate in discriminating patients from healthy controls, ACC = 0.69, SD = 0.05. There were no significant differences between groups, conditions, or their interaction in behavioral performance or event-related potentials. However, patients showed significantly lower alpha suppression in the task preparation, memory encoding, maintenance, and retrieval phases F(1,28) = 5.93, p = 0.022, η2 = 0.149. Further analysis revealed that the two highest peaks in the attention value vector of the DAN model overlapped in time with the preparation and memory retrieval phases, as well as with two of the four significant time-frequency ROIs. Discussion: These results highlight the potential utility of interpretable machine learning algorithms as an aid in diagnosis of schizophrenia and other psychiatric disorders presenting oscillatory abnormalities.

9.
Alzheimers Res Ther ; 15(1): 49, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915148

RESUMO

BACKGROUND: Disease-modifying agents to counteract cognitive impairment in older age remain elusive. Hence, identifying modifiable factors promoting resilience, as the capacity of the brain to maintain cognition and function with aging and disease, is paramount. In Alzheimer's disease (AD), education and occupation are typical cognitive reserve proxies. However, the importance of psychological factors is being increasingly recognized, as their operating biological mechanisms are elucidated. Purpose in life (PiL), one of the pillars of psychological well-being, has previously been found to reduce the deleterious effects of AD-related pathological changes on cognition. However, whether PiL operates as a resilience factor in middle-aged individuals and what are the underlying neural mechanisms remain unknown. METHODS: Data was obtained from 624 middle-aged adults (mean age 53.71 ± 6.9; 303 women) from the Barcelona Brain Health Initiative cohort. Individuals with lower (LP; N = 146) and higher (HP; N = 100) PiL rates, according to the division of this variable into quintiles, were compared in terms of cognitive status, a measure reflecting brain burden (white matter lesions; WMLs), and resting-state functional connectivity, examining system segregation (SyS) parameters using 14 common brain circuits. RESULTS: Neuropsychological status and WMLs burden did not differ between the PiL groups. However, in the LP group, greater WMLs entailed a negative impact on executive functions. Subjects in the HP group showed lower SyS of the dorsal default-mode network (dDMN), indicating lesser segregation of this network from other brain circuits. Specifically, HP individuals had greater inter-network connectivity between specific dDMN nodes, including the frontal cortex, the hippocampal formation, the midcingulate region, and the rest of the brain. Greater functional connectivity in some of these nodes positively correlated with cognitive performance. CONCLUSION: Expanding previous findings on AD pathology and advanced age, the present results suggest that higher rates of PiL may promote resilience against brain changes already observable in middle age. Furthermore, having a purposeful life implies larger functional integration of the dDMN, which may potentially reflect greater brain reserve associated to better cognitive function.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Pessoa de Meia-Idade , Humanos , Adulto , Feminino , Mapeamento Encefálico , Vias Neurais , Encéfalo/patologia , Doença de Alzheimer/patologia , Cognição , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética
10.
J Gerontol B Psychol Sci Soc Sci ; 78(11): 1860-1869, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37587033

RESUMO

OBJECTIVES: Cognitive dispersion, representing intraindividual fluctuations in cognitive performance, is associated with cognitive decline in advanced age. We sought to elucidate sociodemographic, neuropsychological, and brain connectivity correlates of cognitive dispersion in middle age, and further consider potential influences of the severity of subjective cognitive complaints (SCC). METHODS: Five hundred and twenty healthy volunteers from the Barcelona Brain Health Initiative (aged 40-66 years; 49.6% females, 453 with magnetic resonance imaging acquisitions) were included and stratified into high and low SCC groups. Two analysis steps were undertaken: (1) for the whole sample and (2) by groups. Generalized linear models and analysis of covariance were implemented to study associations between cognitive dispersion and performance (episodic memory, speed of processing, and executive function), white matter integrity, and resting-state functional connectivity (rs-FC) of the default mode network (DMN) and dorsal attentional networks (DAN). RESULTS: Across-domain dispersion was negatively related to cognitive performance, rs-FC within the DMN, and between the DMN and the DAN, but not to white matter integrity. The rs-FC values were not explained by cognitive performance. When considering groups, the above findings were significant only for those with high SCC. DISCUSSION: In healthy middle-aged individuals, high cognitive dispersion was related to poorer cognition and DMN dysregulation, being these associations stronger among subjects with high SCC. The present results reinforce the interest in considering dispersion measures within neuropsychological evaluations, as they may be more sensitive to incipient age-related cognitive and functional brain changes than traditional measures of performance.


Assuntos
Encéfalo , Disfunção Cognitiva , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Testes Neuropsicológicos , Cognição/fisiologia
11.
Heliyon ; 8(8): e10208, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991299

RESUMO

Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three timepoints during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress response, as exemplified by the COVID-19 pandemic.

12.
Front Psychol ; 13: 998062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248602

RESUMO

Introduction: Excitability of the primary motor cortex measured with TMS has been associated with cognitive dysfunctions in patient populations. However, only a few studies have explored this relationship in healthy adults, and even fewer have considered the role of biological sex. Methods: Ninety-seven healthy middle-aged adults (53 male) completed a TMS protocol and a neuropsychological assessment. Resting Motor Threshold (RMT) and Long-Interval Intracortical Inhibition (LICI) were assessed in the left motor cortex and related to attention, episodic memory, working memory, reasoning, and global cognition composite scores to evaluate the relationship between cortical excitability and cognitive functioning. Results: In the whole sample, there was a significant association between LICI and cognition; specifically, higher motor inhibition was related to better working memory performance. When the sample was broken down by biological sex, LICI was only associated with working memory, reasoning, and global cognition in men. No associations were found between RMT and cognitive functions. Conclusion: Greater intracortical inhibition, measured by LICI, could be a possible marker of working memory in healthy middle-aged adults, and biological sex plays a critical role in this association.

14.
Front Psychol ; 13: 813444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222201

RESUMO

INTRODUCTION: The prefrontal cortex (PFC) plays a crucial role in cognition, particularly in executive functions. Cortical reactivity measured with Transcranial Magnetic Stimulation combined with Electroencephalography (TMS-EEG) is altered in pathological conditions, and it may also be a marker of cognitive status in middle-aged adults. In this study, we investigated the associations between cognitive measures and TMS evoked EEG reactivity and explored whether the effects of this relationship were related to neurofilament light chain levels (NfL), a marker of neuroaxonal damage. METHODS: Fifty two healthy middle-aged adults (41-65 years) from the Barcelona Brain Health Initiative cohort underwent TMS-EEG, a comprehensive neuropsychological assessment, and a blood test for NfL levels. Global and Local Mean-Field Power (GMFP/LMFP), two measures of cortical reactivity, were quantified after left prefrontal cortex (L-PFC) stimulation, and cognition was set as the outcome of the regression analysis. The left inferior parietal lobe (L-IPL) was used as a control stimulation condition. RESULTS: Local reactivity was significantly associated with working memory and reasoning only after L-PFC stimulation. No associations were found between NfL and cognition. These specific associations were independent of the status of neuroaxonal damage indexed by the NfL biomarker and remained after adjusting for age, biological sex, and education. CONCLUSION: Our results demonstrate that TMS evoked EEG reactivity at the L-PFC, but not the L-IPL, is related to the cognitive status of middle-aged individuals and independent of NfL levels, and may become a valuable biomarker of frontal lobe-associated cognitive function.

15.
Front Aging Neurosci ; 13: 725013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899266

RESUMO

Combining non-invasive brain stimulation (NIBS) with resting-state functional magnetic resonance imaging (rs-fMRI) is a promising approach to characterize and potentially optimize the brain networks subtending cognition that changes as a function of age. However, whether multifocal NIBS approaches are able to modulate rs-fMRI brain dynamics in aged populations, and if these NIBS-induced changes are consistent with the simulated electric current distribution on the brain remains largely unknown. In the present investigation, thirty-one cognitively healthy older adults underwent two different multifocal real transcranial direct current stimulation (tDCS) conditions (C1 and C2) and a sham condition in a crossover design during a rs-fMRI acquisition. The real tDCS conditions were designed to electrically induce two distinct complex neural patterns, either targeting generalized frontoparietal cortical overactivity (C1) or a detachment between the frontal areas and the posteromedial cortex (C2). Data revealed that the two tDCS conditions modulated rs-fMRI differently. C1 increased the coactivation of multiple functional couplings as compared to sham, while a smaller number of connections increased in C1 as compared to C2. At the group level, C1-induced changes were topographically consistent with the calculated electric current density distribution. At the individual level, the extent of tDCS-induced rs-fMRI modulation in C1 was related with the magnitude of the simulated electric current density estimates. These results highlight that multifocal tDCS procedures can effectively change rs-fMRI neural functioning in advancing age, being the induced modulation consistent with the spatial distribution of the simulated electric current on the brain. Moreover, our data supports that individually tailoring NIBS-based interventions grounded on subject-specific structural data might be crucial to increase tDCS potential in future studies amongst older adults.

16.
Res Sq ; 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931185

RESUMO

Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three time points during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress resilience, as exemplified by the COVID-19 pandemic, and point to the L-DLPFC as a promising target for resilience promotion.

17.
Neurosci Lett ; 707: 134288, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31163227

RESUMO

BACKGROUND: Subtle cognitive deficits are present in almost half of the patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS). Similarly, subtle balance deficits can be detected at the earliest stages of the disease. To assess cognitive-motor interference (CMI) in nondisabled CIS patients, we studied postural performance using dual task paradigm in CIS patients presenting with optic neuritis. METHODS: We prospectively included 20 patients with visual acuity of 0.8 or more within the 3 months from unilateral ON. We also included 20 age, weight, height and education matched healthy subjects. Baseline cognitive performance of the patients was assessed using neuropsychological tests. Balance was studied by posturography (Po) and center of pressure (CoP) measures (maximal medio-lateral, maximal antero-posterior amplitudes, maximal CoP velocity and total CoP path. CMI between static balance and WM was investigated using a dual-task paradigm in three conditions: Po alone, Po+Brooks' visual working memory (WM) task and Po+2-back verbal WM task. RESULTS: The two most commonly affected cognitive domains in the patients were attention (52% of the patients) and executive functions (45% of the patients). Static balance as measured by higher maximal CoP velocity while standing alone (p = 0.02) was impaired in patients. Significantly lower maximal m-l CoP amplitude (p = 0.01) and total CoP path (p = 0.004) in the Po + Brooks' task condition compared to Po alone were observed in the group of ON patients but not in healthy subjects. The cost of dualtasking was highest in the ON patients under Po + Brooks' task (p = 0.04 for the total CoP path parameter). CONCLUSION: Static balance and cognition are impaired in the earliest MS. CMI between static balance and working memory is higher in the patients and while loading visual working memory. Dual-task paradigms should be used in rehabilitation programmes for patients at the very beginning of the disease.


Assuntos
Memória de Curto Prazo , Esclerose Múltipla/psicologia , Neurite Óptica/psicologia , Equilíbrio Postural , Comportamento Verbal , Percepção Visual , Adulto , Atenção , Função Executiva , Feminino , Humanos , Masculino , Estudos Prospectivos , Desempenho Psicomotor
18.
Front Neurosci ; 13: 1440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009896

RESUMO

Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) entail capability to modulate human brain dynamics and cognition. However, the comparability of these approaches at the level of large-scale functional networks has not been thoroughly investigated. In this study, 44 subjects were randomly assigned to receive sham (N = 15), tDCS (N = 15), or tACS (N = 14). The first electrode (anode in tDCS) was positioned over the left dorsolateral prefrontal cortex, the target area, and the second electrode (cathode in tDCS) was placed over the right supraorbital region. tDCS was delivered with a constant current of 2 mA. tACS was fixed to 2 mA peak-to-peak with 6 Hz frequency. Stimulation was applied concurrently with functional magnetic resonance imaging (fMRI) acquisitions, both at rest and during the performance of a verbal working memory (WM) task. After stimulation, subjects repeated the fMRI WM task. Our results indicated that at rest, tDCS increased functional connectivity particularly within the default-mode network (DMN), while tACS decreased it. When comparing both fMRI WM tasks, it was observed that tDCS displayed decreased brain activity post-stimulation as compared to online. Conversely, tACS effects were driven by neural increases online as compared to post-stimulation. Interestingly, both effects primarily occurred within DMN-related areas. Regarding the differences in each fMRI WM task, during the online fMRI WM task, tACS engaged distributed neural resources which did not overlap with the WM-dependent activity pattern, but with some posterior DMN regions. In contrast, during the post-stimulation fMRI WM task, tDCS strengthened prefrontal DMN deactivations, being these activity reductions associated with faster responses. Furthermore, it was observed that tDCS neural responses presented certain consistency across distinct fMRI modalities, while tACS did not. In sum, tDCS and tACS modulate fMRI-derived network dynamics differently. However, both effects seem to focus on DMN regions and the WM network-DMN shift, which are highly affected in aging and disease. Thus, albeit exploratory and needing further replication with larger samples, our results might provide a refined understanding of how the DMN functioning can be externally modulated through commonly used non-invasive brain stimulation techniques, which may be of eventual clinical relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA