Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 518(7538): 236-9, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25607368

RESUMO

In the healthy adult brain synapses are continuously remodelled through a process of elimination and formation known as structural plasticity. Reduction in synapse number is a consistent early feature of neurodegenerative diseases, suggesting deficient compensatory mechanisms. Although much is known about toxic processes leading to synaptic dysfunction and loss in these disorders, how synaptic regeneration is affected is unknown. In hibernating mammals, cooling induces loss of synaptic contacts, which are reformed on rewarming, a form of structural plasticity. We have found that similar changes occur in artificially cooled laboratory rodents. Cooling and hibernation also induce a number of cold-shock proteins in the brain, including the RNA binding protein, RBM3 (ref. 6). The relationship of such proteins to structural plasticity is unknown. Here we show that synapse regeneration is impaired in mouse models of neurodegenerative disease, in association with the failure to induce RBM3. In both prion-infected and 5XFAD (Alzheimer-type) mice, the capacity to regenerate synapses after cooling declined in parallel with the loss of induction of RBM3. Enhanced expression of RBM3 in the hippocampus prevented this deficit and restored the capacity for synapse reassembly after cooling. RBM3 overexpression, achieved either by boosting endogenous levels through hypothermia before the loss of the RBM3 response or by lentiviral delivery, resulted in sustained synaptic protection in 5XFAD mice and throughout the course of prion disease, preventing behavioural deficits and neuronal loss and significantly prolonging survival. In contrast, knockdown of RBM3 exacerbated synapse loss in both models and accelerated disease and prevented the neuroprotective effects of cooling. Thus, deficient synapse regeneration, mediated at least in part by failure of the RBM3 stress response, contributes to synapse loss throughout the course of neurodegenerative disease. The data support enhancing cold-shock pathways as potential protective therapies in neurodegenerative disorders.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal , Fármacos Neuroprotetores , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/metabolismo , Animais , Proteínas e Peptídeos de Choque Frio/metabolismo , Modelos Animais de Doenças , Hibernação/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos , Príons/fisiologia , Proteínas de Ligação a RNA/genética , Regeneração
2.
RNA ; 22(4): 623-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857222

RESUMO

The RNA exosome is essential for 3' processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3' preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo.


Assuntos
Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Sequência de Aminoácidos , Animais , Resposta ao Choque Frio , Repressão Enzimática , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação
3.
Nature ; 485(7399): 507-11, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22622579

RESUMO

The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.


Assuntos
Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fosfoproteínas/metabolismo , Príons/metabolismo , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Cinamatos/farmacologia , Fator de Iniciação 2 em Eucariotos/análise , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores , Fosfoproteínas/análise , Fosforilação , Proteínas PrPSc/análise , Proteínas PrPSc/metabolismo , Proteínas PrPSc/toxicidade , Doenças Priônicas/patologia , Príons/biossíntese , Príons/genética , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/química , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia , Resposta a Proteínas não Dobradas/fisiologia
4.
EMBO Mol Med ; 15(5): e17157, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36946385

RESUMO

Neurodegenerative diseases are increasingly prevalent in the aging population, yet no disease-modifying treatments are currently available. Increasing the expression of the cold-shock protein RBM3 through therapeutic hypothermia is remarkably neuroprotective. However, systemic cooling poses a health risk, strongly limiting its clinical application. Selective upregulation of RBM3 at normothermia thus holds immense therapeutic potential. Here we identify a poison exon within the RBM3 gene that is solely responsible for its cold-induced expression. Genetic removal or antisense oligonucleotide (ASO)-mediated manipulation of this exon yields high RBM3 levels independent of cooling. Notably, a single administration of ASO to exclude the poison exon, using FDA-approved chemistry, results in long-lasting increased RBM3 expression in mouse brains. In prion-diseased mice, this treatment leads to remarkable neuroprotection, with prevention of neuronal loss and spongiosis despite high levels of disease-associated prion protein. Our promising results in mice support the possibility that RBM3-inducing ASOs might also deliver neuroprotection in humans in conditions ranging from acute brain injury to Alzheimer's disease.


Assuntos
Oligonucleotídeos Antissenso , Venenos , Humanos , Camundongos , Animais , Idoso , Temperatura , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Proteínas de Ligação a RNA/genética , Temperatura Baixa
5.
Transl Psychiatry ; 12(1): 480, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379919

RESUMO

Perineuronal nets (PNNs) enwrap mature neurons, playing a role in the control of plasticity and synapse dynamics. PNNs have been shown to have effects on memory formation, retention and extinction in a variety of animal models. It has been proposed that the cavities in PNNs, which contain synapses, can act as a memory store and that they remain stable after events that cause synaptic withdrawal such as anoxia or hibernation. We examine this idea by monitoring place memory before and after synaptic withdrawal caused by acute hibernation-like state (HLS). Animals lacking hippocampal PNNs due to enzymatic digestion by chondroitinase ABC or knockout of the PNN component aggrecan were compared with wild type controls. HLS-induced synapse withdrawal caused a memory deficit, but not to the level of untreated naïve animals and not worsened by PNN attenuation. After HLS, only animals lacking PNNs showed memory restoration or relearning. Absence of PNNs affected the restoration of excitatory synapses on PNN-bearing neurons. The results support a role for hippocampal PNNs in learning, but not in long-term memory storage for correction of deficits.


Assuntos
Matriz Extracelular , Sinapses , Animais , Neurônios/fisiologia , Aprendizagem , Proteínas da Matriz Extracelular
6.
Life Sci Alliance ; 4(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33563652

RESUMO

Increasing levels of the cold-shock protein, RNA-binding motif 3 (RBM3), either through cooling or by ectopic over-expression, prevents synapse and neuronal loss in mouse models of neurodegeneration. To exploit this process therapeutically requires an understanding of mechanisms controlling cold-induced RBM3 expression. Here, we show that cooling increases RBM3 through activation of TrkB via PLCγ1 and pCREB signaling. RBM3, in turn, has a hitherto unrecognized negative feedback on TrkB-induced ERK activation through induction of its specific phosphatase, DUSP6. Thus, RBM3 mediates structural plasticity through a distinct, non-canonical activation of TrkB signaling, which is abolished in RBM3-null neurons. Both genetic reduction and pharmacological antagonism of TrkB and its downstream mediators abrogate cooling-induced RBM3 induction and prevent structural plasticity, whereas TrkB inhibition similarly prevents RBM3 induction and the neuroprotective effects of cooling in prion-diseased mice. Conversely, TrkB agonism induces RBM3 without cooling, preventing synapse loss and neurodegeneration. TrkB signaling is, therefore, necessary for the induction of RBM3 and related neuroprotective effects and provides a target by which RBM3-mediated synapse-regenerative therapies in neurodegenerative disorders can be used therapeutically without the need for inducing hypothermia.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neuroproteção , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Temperatura Baixa , Glicoproteínas de Membrana/agonistas , Camundongos , Fosforilação , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo , Ligação Proteica , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura
7.
Front Cell Dev Biol ; 7: 371, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039198

RESUMO

Lipid-transfer proteins (LTPs) were initially discovered as cytosolic factors that facilitate lipid transport between membrane bilayers in vitro. Since then, many LTPs have been isolated from bacteria, plants, yeast, and mammals, and extensively studied in cell-free systems and intact cells. A major advance in the LTP field was associated with the discovery of intracellular membrane contact sites (MCSs), small cytosolic gaps between the endoplasmic reticulum (ER) and other cellular membranes, which accelerate lipid transfer by LTPs. As LTPs modulate the distribution of lipids within cellular membranes, and many lipid species function as second messengers in key signaling pathways that control cell survival, proliferation, and migration, LTPs have been implicated in cancer-associated signal transduction cascades. Increasing evidence suggests that LTPs play an important role in cancer progression and metastasis. This review describes how different LTPs as well as MCSs can contribute to cell transformation and malignant phenotype, and discusses how "aberrant" MCSs are associated with tumorigenesis in human.

8.
Mol Biol Cell ; 15(7): 3433-49, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15090620

RESUMO

In this study, we examined the subcellular distribution and functions of LIMK1 in developing neurons. Confocal microscopy, subcellular fractionation, and expression of several epitope-tagged LIMK1 constructs revealed that LIMK1 is enriched in the Golgi apparatus and growth cones, with the LIM domain required for Golgi localization and the PDZ domain for its presence at neuritic tips. Overexpression of wild-type LIMK1 suppresses the formation of trans-Golgi derived tubules, and prevents cytochalasin D-induced Golgi fragmentation, whereas that of a kinase-defective mutant has the opposite effect. Transfection of wild-type LIMK1 accelerates axon formation and enhances the accumulation of Par3/Par6, insulin-like growth factor (IGF)1 receptors, and neural cell adhesion molecule (NCAM) at growth cones, while inhibiting the Golgi export of synaptophysin-containing vesicles. These effects were dependent on the Golgi localization of LIMK1, paralleled by an increase in cofilin phosphorylation and phalloidin staining in the region of the Golgi apparatus, and prevented by coexpression of constitutive active cofilin. The long-term overexpression of LIMK1 produces growth cone collapse and axon retraction, an effect that is dependent on its growth cone localization. Together, our results suggest an important role for LIMK1 in axon formation that is related with its ability to regulate Golgi dynamics, membrane traffic, and actin cytoskeletal organization.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Complexo de Golgi/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Células Piramidais/enzimologia , Vesículas Transportadoras/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Complexo de Golgi/imunologia , Quinases Lim , Proteínas Quinases , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Ratos , Receptores Proteína Tirosina Quinases/biossíntese , Receptores de Trombina/biossíntese , Sinaptofisina/metabolismo
9.
Curr Biol ; 27(5): 638-650, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28238655

RESUMO

Cooling and hypothermia are profoundly neuroprotective, mediated, at least in part, by the cold shock protein, RBM3. However, the neuroprotective effector proteins induced by RBM3 and the mechanisms by which mRNAs encoding cold shock proteins escape cooling-induced translational repression are unknown. Here, we show that cooling induces reprogramming of the translatome, including the upregulation of a new cold shock protein, RTN3, a reticulon protein implicated in synapse formation. We report that this has two mechanistic components. Thus, RTN3 both evades cooling-induced translational elongation repression and is also bound by RBM3, which drives the increased expression of RTN3. In mice, knockdown of RTN3 expression eliminated cooling-induced neuroprotection. However, lentivirally mediated RTN3 overexpression prevented synaptic loss and cognitive deficits in a mouse model of neurodegeneration, downstream and independently of RBM3. We conclude that RTN3 expression is a mediator of RBM3-induced neuroprotection, controlled by novel mechanisms of escape from translational inhibition on cooling.


Assuntos
Proteínas e Peptídeos de Choque Frio/genética , Resposta ao Choque Frio/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Animais , Proteínas e Peptídeos de Choque Frio/metabolismo , Temperatura Baixa , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
J Neurosci ; 30(36): 11883-4, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826652
11.
Mol Biol Cell ; 21(20): 3518-28, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20719958

RESUMO

Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization.


Assuntos
Axônios/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Citocalasina D/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cinética , Quinases Lim/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
J Biol Chem ; 284(14): 9489-97, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19158085

RESUMO

In this study, we have used a combination of biochemical and molecular biology techniques to demonstrate that the C-terminal tail domain of KIF4 directly interacts with P0, a major protein component of ribosomes. Besides, in dorsal root ganglion neurons, KIF4 and P0, as well as other ribosomal constituents, colocalize in clusters distributed along axons and neuritic tips. RNA interference suppression of KIF4 or expression of KIF4 variants lacking the tail domain or mutations of the ATP-binding site result in accumulation of P0 and other ribosomal proteins at the cell body and in their disappearance from axons. Our results also show one additional function for KIF4 involving an Ezrin-Radixin-Moesin-like domain in the second coiled-coiled region of KIF4. Expression of a KIF4 mutant lacking this domain abolishes the clustering of ribosomal constituents and prevents the anterograde translocation of the cell adhesion molecule L1. Taken together, the present results suggest that by binding to P0 through its tail domain and by using its motor activity, KIF4 is involved in the anterograde trafficking of ribosomal constituents to axons and that by means of its Ezrin-Radixin-Moesin-like domain interacts and transports L1.


Assuntos
Transporte Axonal , Axônios/metabolismo , Cinesinas/metabolismo , Ribossomos/metabolismo , Animais , Células Cultivadas , Feminino , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cinesinas/genética , Masculino , Camundongos , Mutação/genética , Ligação Proteica , Transporte Proteico , Interferência de RNA , Ratos
13.
Trends Cell Biol ; 18(6): 282-90, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18468439

RESUMO

The VAMP-associated proteins (VAPs) are highly conserved integral endoplasmic reticulum membrane proteins implicated in diverse cellular functions, including the regulation of lipid transport and homeostasis, membrane trafficking, neurotransmitter release, stabilization of presynaptic microtubules, and the unfolded protein response. Recently, a single missense mutation within the human VAP-B gene was identified in three forms of familial motor neuron disease. In this review, we integrate results from studies of yeast, fly and mammalian VAPs that provide insight into the structural features of these proteins, the network of VAP-interacting proteins, their possible physiological functions, and their involvement in motor neuron disease.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Lipídeos/química , Neurônios Motores/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Drosophila melanogaster/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Telômero/ultraestrutura
14.
Mol Biol Cell ; 19(9): 3871-84, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18614794

RESUMO

Lipid transport between intracellular organelles is mediated by vesicular and nonvesicular transport mechanisms and is critical for maintaining the identities of different cellular membranes. Nonvesicular lipid transport between the endoplasmic reticulum (ER) and the Golgi complex has been proposed to affect the lipid composition of the Golgi membranes. Here, we show that the integral ER-membrane proteins VAP-A and VAP-B affect the structural and functional integrity of the Golgi complex. Depletion of VAPs by RNA interference reduces the levels of phosphatidylinositol-4-phosphate (PI4P), diacylglycerol, and sphingomyelin in the Golgi membranes, and it leads to substantial inhibition of Golgi-mediated transport events. These effects are coordinately mediated by the lipid-transfer/binding proteins Nir2, oxysterol-binding protein (OSBP), and ceramide-transfer protein (CERT), which interact with VAPs via their FFAT motif. The effect of VAPs on PI4P levels is mediated by the phosphatidylinositol/phosphatidylcholine transfer protein Nir2, which is required for Golgi targeting of OSBP and CERT and the subsequent production of diacylglycerol and sphingomyelin. We propose that Nir2, OSBP, and CERT function coordinately at the ER-Golgi membrane contact sites, thereby affecting the lipid composition of the Golgi membranes and consequently their structural and functional identities.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Olho/metabolismo , Complexo de Golgi/metabolismo , Lipídeos/química , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Proteínas de Ligação ao Cálcio/química , Proteínas do Olho/química , Células HeLa , Humanos , Proteínas de Membrana/química , Fosfatos de Fosfatidilinositol/química , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Receptores de Esteroides/química , Esfingomielinas/metabolismo
15.
Traffic ; 7(11): 1495-502, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16956385

RESUMO

Post-Golgi to apical surface delivery in polarized epithelial cells requires the cytoplasmic dynein motor complex. However, the nature of dynein-cargo interactions and their underlying regulation are largely unknown. Previous studies have shown that the apical surface targeting of rhodopsin requires the dynein light chain, Tctex-1, which binds directly to both dynein intermediate chain (IC) and rhodopsin. In this report, we show that the S82E mutant of Tctex-1, which mimics Tctex-1 phosphorylated at serine 82, has a reduced affinity for dynein IC but not for rhodopsin. Velocity sedimentation experiments further suggest that S82E is not incorporated into the dynein complex. The dominant-negative effect of S82E causes rhodopsin mislocalization in polarized Madin-Darby canine kidney (MDCK) cells. The S82A mutant, which mimics dephosphorylated Tctex-1, can be incorporated into dynein complex but is impaired in its release. Expression of S82A also causes disruption of the apical localization of rhodopsin in MDCK cells. Taken together, these results suggest that the dynein complex disassembles to release cargo due to the specific phosphorylation of Tctex-1 at the S82 residue and that this process is critical for the apical delivery of membrane cargoes.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Rodopsina/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Contactina 1 , Cães , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Rodopsina/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Taninos/farmacologia , Junções Íntimas/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteína da Zônula de Oclusão-1 , Região do Complexo-t do Genoma
16.
J Cell Sci ; 116(Pt 7): 1209-17, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12615964

RESUMO

Exocytotic incorporation of plasmalemmal precursor vesicles (PPVs) into the cell surface is necessary for neurite extension and is known to occur mainly at the growth cone. This report examines whether this is a regulated event controlled by growth factors. The Golgi complex and nascent PPVs of hippocampal neurons in culture were pulse-labeled with fluorescent ceramide. We studied the dynamics of labeled PPVs upon arrival at the axonal growth cone. In controls and cultures stimulated with brain-derived neurotrophic factor (BDNF), PPV clusters persisted in growth cones with a half-life (t(1/2)) of >14 minutes. Upon challenge with IGF-1, however, fluorescent elements cleared from the growth cones with a t(1/2) of only 6 minutes. Plasmalemmal expansion was measured directly as externalization of membrane glycoconjugates in resealed growth cone particles (GCPs) isolated from fetal forebrain. These assays demonstrated that membrane expansion could be stimulated by IGF-1 in a dose-dependent manner but not by BDNF, even though intact, functional BDNF receptor was present on GCPs. Because both BDNF and IGF-1 are known to enhance neurite growth, but BDNF did not stimulate membrane expansion at the growth cone, we studied the effect of BDNF on the IGF-1 receptor. BDNF was found to cause the translocation of the growth-cone-specific IGF-1 receptor subunit beta(gc) to the distal axon, in a KIF2-dependent manner. We conclude that IGF-1 stimulates axonal assembly at the growth cone, and that this occurs via regulated exocytosis of PPVs. This mechanism is affected by BDNF only indirectly, by regulation of the beta(gc) level at the growth cone.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Cones de Crescimento/metabolismo , Substâncias de Crescimento/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Células Cultivadas , Ceramidas , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Feto , Corantes Fluorescentes , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Substâncias de Crescimento/farmacologia , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Cinesinas/efeitos dos fármacos , Cinesinas/metabolismo , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/metabolismo , Receptor trkB/agonistas , Receptor trkB/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA