Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396830

RESUMO

IRF1 is a transcription factor well known for its role in IFN signaling. Although IRF1 was initially identified for its involvement in inflammatory processes, there is now evidence that it provides a function in carcinogenesis as well. IRF1 has been shown to affect several important antitumor mechanisms, such as induction of apoptosis, cell cycle arrest, remodeling of tumor immune microenvironment, suppression of telomerase activity, suppression of angiogenesis and others. Nevertheless, the opposite effects of IRF1 on tumor growth have also been demonstrated. In particular, the "immune checkpoint" molecule PD-L1, which is responsible for tumor immune evasion, has IRF1 as a major transcriptional regulator. These and several other properties of IRF1, including its proposed association with response and resistance to immunotherapy and several chemotherapeutic drugs, make it a promising object for further research. Numerous mechanisms of IRF1 regulation in cancer have been identified, including genetic, epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms, although their significance for tumor progression remains to be explored. This review will focus on the established tumor-suppressive and tumor-promoting functions of IRF1, as well as the molecular mechanisms of IRF1 regulation identified in various cancers.


Assuntos
Fator Regulador 1 de Interferon , Neoplasias , Humanos , Carcinogênese/genética , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral
2.
Biochemistry (Mosc) ; 88(8): 1061-1069, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758307

RESUMO

Activation of the constitutive androstane receptor (CAR, NR1I3) by chemical compounds induces liver hyperplasia in rodents. 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a mouse CAR agonist, is most often used to study chemically induced liver hyperplasia and hepatocyte proliferation in vivo. TCPOBOP is a potent murine liver chemical mitogen, which induces rapid liver hyperplasia in mice independently of liver injury. In recent years, great amount of data has been accumulated on the transcription program that characterizes the TCPOBOP-induced hepatocyte proliferation. However, there are only few data about the metabolic requirements of hepatocytes that divide upon exposure to xenobiotics. In the present study, we have employed liquid chromatography - mass spectrometry technology combined with statistical analysis to investigate metabolite profile of small biomolecules, in order to identify key metabolic changes in the male mouse liver tissue after TCPOBOP administration. Analysis of biochemical pathways of the differentially affected metabolites in the mouse liver demonstrated significant TCPOBOP-mediated enrichment of several processes including those associated with nucleotide metabolism, amino acid metabolism, and energy substrate metabolism. Our findings provide evidence to support the conclusion that the CAR agonist, TCPOBOP, initiates an intracellular program that promotes global coordinated metabolic activities required for hepatocyte proliferation. Our metabolic data might provide novel insight into the biological mechanisms that occur during the TCPOBOP-induced hepatocyte proliferation in mice.


Assuntos
Receptor Constitutivo de Androstano , Receptores Citoplasmáticos e Nucleares , Animais , Masculino , Camundongos , Proliferação de Células , Receptor Constitutivo de Androstano/agonistas , Hepatócitos/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
Biochemistry (Mosc) ; 87(11): 1310-1326, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36509719

RESUMO

Tumor-suppressive effects of PTEN are well-known, but modern evidence suggest that they are not limited to its ability to inhibit pro-oncogenic PI3K/AKT signaling pathway. Features of PTEN structure facilitate its interaction with substrates of different nature and display its activity in various ways both in the cytoplasm and in cell nuclei, which makes it possible to take a broader look at its ability to suppress tumor growth. The possible mechanisms of the loss of PTEN effects are also diverse - PTEN can be regulated at many levels, leading to change in the protein activity or its amount in the cell, while their significance for the development of malignant tumors has yet to be studied. Here we summarize the current data on the PTEN structure, its functions and changes in its regulatory mechanisms during malignant transformation of the cells, focusing on one of the most sensitive to the loss of PTEN types of malignant tumors - endometrial cancer.


Assuntos
Neoplasias do Endométrio , Fosfatidilinositol 3-Quinases , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transformação Celular Neoplásica/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Genes Supressores de Tumor , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Cancers (Basel) ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927914

RESUMO

Smoking is an established risk factor for a variety of malignant tumors, the most well-known of which is lung cancer. Various molecular interactions are known to link tobacco smoke exposure to lung cancer, but new data are still emerging on the effects of smoking on lung cancer development, progression, and tumor response to therapy. In this study, we reveal in further detail the previously established association between smoking and hsa-mir-301a activity in lung squamous cell carcinoma, LUSC. Using different bioinformatic tools, we identified IRF1 as a key smoking-regulated target of hsa-mir-301a in LUSC. We further confirmed this relationship experimentally using clinical LUSC tissue samples and intact lung tissue samples. Thus, increased hsa-mir-301a levels, decreased IRF1 mRNA levels, and their negative correlation were shown in LUSC tumor samples. Additional bioinformatic investigation for potential pathways impacted by such a mechanism demonstrated IRF1's multifaceted role in controlling the antitumor immune response in LUSC. IRF1 was then shown to affect tumor immune infiltration, the expression of immune checkpoint molecules, and the efficacy of immune checkpoint blockade therapy. As a result, here we suggest a smoking-regulated mir301a/IRF1 molecular axis that could modulate the antitumor immune response and immunotherapy efficacy in LUSC, opening up novel opportunities for future research.

5.
Heliyon ; 9(8): e19044, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609416

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is a tumor suppressor inactivated in a variety of human cancers. PTEN alteration correlates with lung squamous-cell carcinoma (LUSC) histology. However, it is still unclear how tobacco smoke regulates PTEN in LUSC tissues. In this study, we used free online databases and online tools to analyze PTEN expression and the role of smoking on PTEN alteration in patients with LUSC. We validated bioinformatics data by performing RT-PCR analysis using LUSC patient samples. Our results showed a correlation between the downregulation of PTEN in LUSC tissues compared to normal tissues and smoking exposure. In silico results using online platforms suggest that hsa-mir-301a down-regulates PTEN expression level in smoking patients with LUSC. RT-PCR analysis demonstrated that the PTEN expression was significantly decreased, whereas expression of hsa-mir-301a was up-regulated in the smoker cohort of LUSC tissue compared to adjacent non-cancerous tissues. A significant negative correlation between PTEN and hsa-mir-301a levels was observed in tumour tissues in our cohort of LUSC patients. Our results suggest that the downregulation PTEN gene caused by tobacco smoke-mediated increase of hsa-mir-301a may play an important role in LUSC tumorigenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA