Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 456(7218): 107-11, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987743

RESUMO

Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.


Assuntos
Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA/genética , DNA/metabolismo , Engenharia Genética , Xeroderma Pigmentoso/genética , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Cristalografia por Raios X , DNA/química , Reparo do DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/toxicidade , Estabilidade Enzimática , Humanos , Modelos Moleculares , Fosforilação , Multimerização Proteica , Especificidade por Substrato
2.
Nucleic Acids Res ; 40(13): 6367-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467209

RESUMO

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.


Assuntos
Efeitos da Posição Cromossômica , Enzimas de Restrição do DNA/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Marcação de Genes , Engenharia Genética , Genoma Humano , Humanos , Mutagênese
3.
J Mol Biol ; 371(1): 49-65, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17561112

RESUMO

Meganucleases are sequence-specific endonucleases which recognize large (>12 bp) target sites in living cells and can stimulate homologous gene targeting by a 1000-fold factor at the cleaved locus. We have recently described a combinatorial approach to redesign the I-CreI meganuclease DNA-binding interface, in order to target chosen sequences. However, engineering was limited to the protein regions shown to directly interact with DNA in a base-specific manner. Here, we take advantage of I-CreI natural degeneracy, and of additional refinement steps to extend the number of sequences that can be efficiently cleaved. We searched the sequence of the human XPC gene, involved in the disease Xeroderma Pigmentosum (XP), for potential targets, and chose three sequences that differed from the I-CreI cleavage site over their entire length, including the central four base-pairs, whose role in the DNA/protein recognition and cleavage steps remains very elusive. Two out of these targets could be cleaved by engineered I-CreI derivatives, and we could improve the activity of weak novel meganucleases, to eventually match the activity of the parental I-CreI scaffold. The novel proteins maintain a narrow cleavage pattern for cognate targets, showing that the extensive redesign of the I-CreI protein was not made at the expense of its specificity. Finally, we used a chromosomal reporter system in CHO-K1 cells to compare the gene targeting frequencies induced by natural and engineered meganucleases. Tailored I-CreI derivatives cleaving sequences from the XPC gene were found to induce high levels of gene targeting, similar to the I-CreI scaffold or the I-SceI "gold standard". This is the first time an engineered homing endonuclease has been used to modify a chromosomal locus.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Marcação de Genes , Engenharia de Proteínas , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Genes Reporter , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
J Periodontol ; 79(5): 795-801, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18454657

RESUMO

BACKGROUND: The purposes of this study were to quantify some clinical parameters that are useful as esthetic guidelines when the gingival contour is modified and to compare the left and right sides of the six maxillary anterior teeth. METHODS: Maxillary casts mounted on an articulator according to the axis orbital plane were photographed from 103 young adults. The angle formed between the gingival line and the maxillary midline (GLA) and the distance between the gingival zenith of the lateral incisor and the gingival line (LID) were measured. The asymmetry was evaluated using a paired t test for the left versus right measurements of GLA and LID. The descriptive statistics for GLA and LID were calculated. RESULTS: The GLA measurements of the left side (86.5 degrees +/- 5.1 degrees ) were significantly greater than those of the right side (85.2 degrees +/- 4.9 degrees ), and the mean absolute asymmetry for GLA was 4.1 degrees +/- 3.0 degrees . The mean LID measurement was 0.68 +/- 0.52 mm. CONCLUSIONS: The gingival zenith of the canine is apical to the gingival zenith of the incisors (GLA <90 degrees ), and the gingival zenith of the lateral incisor is below (81.1%) or on (15%) the gingival line when the head is oriented in the axis orbital plane. A directional asymmetry was shown, with the right side higher than the left side. Along with other parameters related to dental esthetics, these clinical parameters applied to the gingival contours may serve as esthetic guidelines and may enable us to obtain a more predictable esthetic outcome.


Assuntos
Estética Dentária , Gengiva/anatomia & histologia , Gengivoplastia/normas , Adulto , Cefalometria , Dente Canino/anatomia & histologia , Dentição Permanente , Feminino , Lateralidade Funcional , Humanos , Incisivo/anatomia & histologia , Masculino , Maxila , Padrões de Referência
5.
J Mol Biol ; 355(3): 443-58, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16310802

RESUMO

The last decade has seen the emergence of a universal method for precise and efficient genome engineering. This method relies on the use of sequence-specific endonucleases such as homing endonucleases. The structures of several of these proteins are known, allowing for site-directed mutagenesis of residues essential for DNA binding. Here, we show that a semi-rational approach can be used to derive hundreds of novel proteins from I-CreI, a homing endonuclease from the LAGLIDADG family. These novel endonucleases display a wide range of cleavage patterns in yeast and mammalian cells that in most cases are highly specific and distinct from I-CreI. Second, rules for protein/DNA interaction can be inferred from statistical analysis. Third, novel endonucleases can be combined to create heterodimeric protein species, thereby greatly enhancing the number of potential targets. These results describe a straightforward approach for engineering novel endonucleases with tailored specificities, while preserving the activity and specificity of natural homing endonucleases, and thereby deliver new tools for genome engineering.


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA/metabolismo , Recombinação Genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Análise por Conglomerados , Cricetinae , Cricetulus , DNA/química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Engenharia de Proteínas , Leveduras/enzimologia , Leveduras/genética
6.
Biotechniques ; 39(1): 109-15, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16060375

RESUMO

Double-strand break (DSB)-induced homologous recombination (HR) of direct repeats is a powerful means to achieve gene excision, a critical step in genome engineering. In this report we have used an extrachrmosomal reporter system to monitor the impact of different parameters on meganuclease-induced HR in CHO-K1 cells. We found that repeat homology length is critical. Virtually no HR could be detected with a 15-bp duplication, while, with repeats larger than 400 bp, recombination efficiency became less dependent on homology length. The presence of an intervening sequence between the duplications dramatically impairs HR, independent of the cleavage position; by 3 kb of insertion, HR is virtually undetectable. Efficient HR can be restored by positioning cleavage sites at both ends of the intervening sequence, allowing a constant level of excision with up to 10 kb of intervening sequences. Using similar constructs, 2.8-kb inserts could be efficiently removed from several chromosomal loci, illustrating the wide potential of this technology. These results fit current models of direct repeat recombination and identify DSB-induced HR as a powerful tool for gene excision.


Assuntos
Quebra Cromossômica/genética , Dano ao DNA , Reparo do DNA , Engenharia Genética/métodos , Recombinação Genética/genética , Animais , Células CHO , Cricetinae , Cricetulus , DNA de Cadeia Simples
7.
PLoS One ; 8(1): e53217, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23359797

RESUMO

Targeting DNA double-strand breaks is a powerful strategy for gene inactivation applications. Without the use of a repair plasmid, targeted mutagenesis can be achieved through Non-Homologous End joining (NHEJ) pathways. However, many of the DNA breaks produced by engineered nucleases may be subject to precise re-ligation without loss of genetic information and thus are likely to be unproductive. In this study, we combined engineered endonucleases and DNA-end processing enzymes to increase the efficiency of targeted mutagenesis, providing a robust and efficient method to (i) greatly improve targeted mutagenesis frequency up to 30-fold, and; (ii) control the nature of mutagenic events using meganucleases in conjunction with DNA-end processing enzymes in human primary cells.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA/metabolismo , Endonucleases/metabolismo , Mutagênese , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , DNA/genética , Primers do DNA , Células HEK293 , Humanos
8.
J Nucleic Acids ; 2011: 947212, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21716659

RESUMO

Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination.

9.
J Gene Med ; 8(5): 616-22, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16475243

RESUMO

BACKGROUND: Sequence-specific endonucleases with large recognition sites can cleave DNA in living cells, and, as a consequence, stimulate homologous recombination (HR) up to 10 000-fold. The recent development of artificial meganucleases with chosen specificities has provided the potential to target any chromosomal locus. Thus, they may represent a universal genome engineering tool and seem to be very promising for acute gene therapy. However, in toto applications depend on the ability to target somatic tissues as well as the proficiency of somatic cells to perform double-strand break (DSB)-induced HR. METHODS: In order to investigate DSB-induced HR in toto, we have designed transgenic mouse lines carrying a LagoZ gene interrupted by one I-SceI cleavage site surrounded by two direct repeats. The LagoZ gene can be rescued upon cleavage by I-SceI and HR between the two repeats in a process called single-strand annealing. beta-Galactosidase activity is monitored in liver after tail vein injection of adenovirus expressing the meganuclease I-SceI. RESULTS: In toto staining revealed a strong dotted pattern in all animals injected with adenovirus expressing I-SceI. In contrast, no staining could be detected in the control. beta-Galactosidase activity in liver extract, tissue section staining, and PCR analysis confirmed the presence of the recombined LagoZ gene. CONCLUSIONS: We demonstrate for the first time that meganucleases can be successfully delivered in animal and induce targeted genomic recombination in mice liver in toto. These results are an essential step towards the use of designed meganucleases and show the high potential of this technology in the field of gene therapy.


Assuntos
Recombinação Genética , Animais , Sequência de Bases , DNA/genética , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Genes Reporter , Engenharia Genética , Terapia Genética , Óperon Lac , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Saccharomyces cerevisiae
10.
J Biol Chem ; 277(39): 35808-14, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12082089

RESUMO

Production of the two mRNAs encoding distinct forms of 2'-5'-oligoadenylate synthetase depends on processing that involves the recognition of alternative poly(A) sites and an internal 5'-splice site located within the first 3'-terminal exon. The resulting 1.6- and 1.8-kb mRNAs are expressed in fibroblast cell lines, whereas lymphoblastoid B cells, such as Daudi, produce only the 1.8-kb mRNA. In the present study, we have shown that the 3'-end processing at the last 3'-terminal exon occurs independently of the core poly(A) site sequence or the presence of regulatory elements. In contrast, in Daudi cells, the recognition of the poly(A) site at the first 3'-terminal exon is impaired because of an unfavorable sequence context. The 3'-end processing at this particular location requires a strong stabilization of the cleavage/polyadenylation factors, which can be achieved by the insertion of a 25-nucleotide long U-rich motif identified upstream of the last poly(A) site. Consequently, we speculate that in cells expressing the 1.6-kb mRNA, such as fibroblasts, direct or indirect participation of a specific mechanism or cell type-specific factors are required for an efficient polyadenylation at the first 3'-terminal exon.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Transcrição Gênica , Motivos de Aminoácidos , Animais , Sequência de Bases , Células COS , Éxons , Fibroblastos/metabolismo , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Poli A , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA