Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998591

RESUMO

In today's market, the pursuit of product optimization is not just a trend but a necessity while facing the challenges of supplying a wider range of products, sustainability pressures, and the requirement for continuous innovation [...].

2.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000695

RESUMO

Gelatin-based hydrogels have garnered significant attention in the fields of drug delivery systems and tissue engineering owing to their biodegradability, biocompatibility, elasticity, flexibility and nontoxic nature. However, there is a lack of information regarding type-A-gelatin-based hydrogels. In this sense, the main aim of this work was the evaluation of the properties of type-A-gelatin-based hydrogel achieved using two different gelation temperatures (4 °C and 20 °C). Thus, the main novelty of this study lies in the analysis of the impact of gelation time on the rheological and microstructural properties of type-A-gelatin-based hydrogels. Moreover, the addition of a drug was also analyzed in order to evaluate the hydrogels' behavior as a drug delivery system. For this purpose, rheological (strain, frequency sweep tests and flow curves) and microstructural (SEM) characterizations were carried out. The results demonstrated that lowering the gelation temperature improved the rheological properties of the systems, obtaining hydrogels with an elastic modulus of 20 kPa when processing at 4 °C. On the other hand, the increase in the gelation temperature improved the critical strain of the systems at low temperatures. In conclusion, this work showed the feasibility of producing hydrogels with potential application in drug delivery with different properties, varying the testing temperature and incorporating tetracycline into their formulation.

3.
Int J Biol Macromol ; 268(Pt 2): 131599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626840

RESUMO

Phycocyanin (PC), a protein derived from algae, is non-toxic and biocompatible. Due to its environmental and sustainable properties, it has been studied as an alternative stabilizer for food emulsions. In this sense, the main objective of this work is to evaluate the effectiveness of PC and its use in combination with diutan gum (DG), a biological macromolecule, to prepare emulgels formulated with avocado oil. Z-potential measurements show that the optimum pH for working with PC is 2.5. Furthermore, the system exhibited a structured interface at this pH. The surface tension did not decrease further above 1.5 wt% PC. Interestingly, emulsions formulated with >1.5 wt% PC showed recoalescence immediately after preparation. Although 1.5 wt% had the smallest droplet size, this emulsion underwent creaming due to the low viscosity of the system. DG was used in combination with PC to increase viscosity and reduce creaming. As little as 0.1 wt% DG was sufficient to form an emulgel when incorporated into the previous emulsion, which exhibited pseudoplastic behaviour and viscoelastic properties with very low creaming rates. However, the use of PC in combination with DG resulted in a non-aggregated and stable emulgel with 1.5 wt% PC and 0.1 wt% DG.


Assuntos
Materiais Biocompatíveis , Emulsões , Ficocianina , Ficocianina/química , Emulsões/química , Viscosidade , Materiais Biocompatíveis/química , Géis/química , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos , Gomas Vegetais/química , Reologia , Tensão Superficial
4.
Int J Biol Macromol ; 271(Pt 1): 131981, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811317

RESUMO

The development of new Drug Delivery Systems (DDS) by incorporating microparticles within hydrogels can prolong the release rate of drugs and/or other bioactive agents. In this study, we combined gellan gum/alginate microparticles within a thermoresponsive chitosan (Ch) hydrogel with ß-Glycerophosphate (ß-GP), designing the system to be in the sol state at 21 °C and in the gel state at 37 °C to enable the injectability of the system. The system was in the sol state between 10 °C and 21 °C. Higher concentrations of ß-GP (0, 2, 3, 4, 5 w/v%) and microparticles (0, 2 and 5 w/v%) allowed a faster sol-gel transition with higher mechanical strength at 37 °C. However, the sol-gel transition was not instantaneous. The release profile of methylene blue (MB) from the microparticles was significantly affected by their incorporation in Ch/ß-GP hydrogels, only allowing the release of 60-70 % of MB for 6 days, while the microparticles alone released all the MB in 48 h. The proposed system did not present cytotoxicity to VERO cell lines as a preliminary assay, with the Ch/ß-GP/GG:Alg having >90 % of cellular viability. The proposed Ch/ß-GP system proved to have a delaying effect on drug release and biocompatible properties, being a promising future DDS.


Assuntos
Alginatos , Quitosana , Glicerofosfatos , Polissacarídeos Bacterianos , Quitosana/química , Alginatos/química , Polissacarídeos Bacterianos/química , Glicerofosfatos/química , Animais , Chlorocebus aethiops , Hidrogéis/química , Células Vero , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Temperatura , Microesferas , Injeções , Sobrevivência Celular/efeitos dos fármacos
5.
Int J Biol Macromol ; 263(Pt 2): 129858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423911

RESUMO

Tissue engineering (TE) demands scaffolds that have the necessary resistance to withstand the mechanical stresses once implanted in our body, as well as excellent biocompatibility. Hydrogels are postulated as interesting materials for this purpose, especially those made from biopolymers. In this study, the microstructure and rheological performance, as well as functional and biological properties of chitosan and collagen hydrogels (CH/CG) crosslinked with different coupling agents, both natural such as d-Fructose (F), genipin (G) and transglutaminase (T) and synthetic, using a combination of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride with N-hydroxysuccinimide (EDC/NHS) will be assessed. FTIR tests were carried out to determine if the proposed crosslinking reactions for each crosslinking agent occurred as expected, obtaining positive results in this aspect. Regarding the characterization of the properties of each system, two main trends were observed, from which it could be established that crosslinking with G and EDC-NHS turned out to be more effective and beneficial than with the other two crosslinking agents, producing significant improvements with respect to the base CH/CG hydrogel. In addition, in vitro tests demonstrated the potential application in TE of these systems, especially for those crosslinked with G, T and EDC-NHS.


Assuntos
Quitosana , Engenharia Tecidual , Engenharia Tecidual/métodos , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Colágeno/química , Biopolímeros , Reagentes de Ligações Cruzadas/química , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
6.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679232

RESUMO

Keratin is a largely available protein that can be obtained from the ca. 3 million tons of feathers that the European poultry industry produces as a side-stream. Here, the functionalization of keratin from poultry feathers was evaluated using a one- versus two-stage process using two functionalization agents (succinic anhydride-SA and ethylene dianhydride-EDTAD). The functionalization resulted in the keratin having improved liquid swelling capacities, reaching up to 400%, 300%, and 85% increase in water, saline, and blood, respectively, compared to non-functionalized keratin. The highest swelling was obtained for samples functionalized with EDTAD (one-stage process), while the highest saline uptake was noted for samples processed with 25 wt% SA (two-stage process). Swelling kinetics modeling indicated that the water uptake by the functionalized samples takes place in two steps, and the EDTAD samples showed the highest diffusivity. It is demonstrated that the one-stage functionalization of keratin utilizing EDTAD results in better performance than two-stages, which allows for resource-saving and, thereby, protecting the environment. The results show some potential for the keratin to be utilized as liquid absorbent materials in water, saline, and blood uptake applications. Using keratin from side-streams is an advantage from a sustainability perspective over biomacromolecules that need to be extracted from virgin biomass.

7.
ACS Appl Polym Mater ; 5(9): 6976-6989, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705711

RESUMO

Protein-based porous absorbent structures can be processed and assembled into configurations suitable for single-use, biodegradable sanitary materials. In this work, a formulation based on a mixture of proteins available as industrial coproducts is processed into continuous porous structures using extrusion and assembled using conventional thermal methods. The experimental design led to formulations solely based on zein-gluten protein bioblends that could be manufactured as liquid absorbent pellets, compressed pads, and/or porous films. The processing versatility is attributed to the synergistic effect of zein as a low viscosity thermoformable protein with gluten as a readily cross-linkable high molecular weight protein. The capillary-driven sorption, the biodegradability of the materials, and the possibility to assemble the products as multilayer components provide excellent performance indicators for their use as microplastic-free absorbents. This work shows the potential of biopolymers for manufacturing sustainable alternatives to current nonbiodegradable and highly polluting disposable items such as pads and diapers.

8.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376271

RESUMO

The development of biodegradable plastics and eco-friendly biomaterials derived from renewable resources is crucial for reducing environmental damage. Agro-industrial waste and rejected food can be polymerized into bioplastics, offering a sustainable solution. Bioplastics find use in various industries, including for food, cosmetics, and the biomedical sector. This research investigated the fabrication and characterization of bioplastics using three types of Honduran agro-wastes: taro, yucca, and banana. The agro-wastes were stabilized and characterized (physicochemically and thermically). Taro flour presented the highest protein content (around 4.7%) and banana flour showed the highest moisture content (around 2%). Furthermore, bioplastics were produced and characterized (mechanically and functionally). Banana bioplastics had the best mechanical properties, with a Young's modulus around 300 MPa, while taro bioplastics had the highest water-uptake capacity (200%). In general, the results showed the potential of these Honduran agro-wastes for producing bioplastics with different characteristics that could add value to these wastes, promoting the circular economy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA