Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1219761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521463

RESUMO

mRNA-based vaccines and candidate therapeutics have great potential in various medical fields. For the delivery of mRNA into target cells and tissues, lipid formulations are often employed. However, this approach could cause the activation of immune responses, making it unsuitable for the treatment of inflammatory conditions. Therefore, alternative delivery systems are highly demanded. In this study, we evaluated the transport efficiency and characteristics of cell-penetrating peptide PepFect14 (PF14) and mRNA nanoparticles in the presence of different additives. Our results show that all PF14-mRNA formulations entered cultured cells, while calcium chloride enhanced the transport and production of the encoded protein in HeLa and HaCaT cell lines, and polysorbate 80 did so in primary human keratinocytes. All formulations had similar physical properties and did not remarkably affect cell viability. By selectively blocking endocytosis pathways, we show that PF14-mRNA nanoparticles primarily entered HeLa cells via macropinocytosis and HaCaT cells via both macropinocytosis and clathrin-mediated endocytosis, while none of the blockers significantly affected the delivery into primary keratinocytes. Finally, subcutaneous injection of PF14-mRNA nanoparticles before inducing mouse irritant contact dermatitis resulted in the expression of a reporter protein without provoking harmful immune responses in the skin. Together, our findings suggest that PF14-mRNA nanoparticles have the potential for developing mRNA-based therapeutics for treating inflammatory skin conditions.

2.
Methods Mol Biol ; 2383: 515-528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766310

RESUMO

microRNAs (miRNAs) have capacity to modulate numerous biological processes and therefore synthetic oligonucleotides mimicking or inhibiting particular miRNA have potential in the development of novel types of therapeutics. We have elaborated several methods for safe and efficient overexpression of miRNAs using self-forming nanocomplexes of PepFect or NickFect type of cell-penetrating peptides (CPPs) and oligonucleotides mimicking well-characterized anti-inflammatory miR-146a. We focus on chronic inflammatory diseases affecting epithelium, such as atopic dermatitis and asthma harnessing respective cell cultures and mouse models. Here we provide protocols for miRNA transfection into primary human keratinocytes, primary human bronchial epithelial cells, and human monocyte-derived dendritic cells using CPPs PepFect14, NickFect70, NickFect71, and NickFect72. In addition, we provide protocols for application of CPP-miRNA nanocomplexes in in vivo mouse models of irritant contact dermatitis and allergic airway inflammation.


Assuntos
Pele , Animais , Técnicas de Cultura de Células , Peptídeos Penetradores de Células , Modelos Animais de Doenças , Inflamação , Camundongos , MicroRNAs/genética , Oligonucleotídeos , Sistema Respiratório
3.
Cells ; 11(13)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805086

RESUMO

The miR-146 family consists of two microRNAs (miRNAs), miR-146a and miR-146b, which are both known to suppress a variety of immune responses. Here in this study, we show that miR-146b is abundantly expressed in neuronal cells, while miR-146a is mainly expressed in microglia and astroglia of adult mice. Accordingly, miR-146b deficient (Mir146b-/-) mice exhibited anxiety-like behaviors and enhanced cognition. Characterization of cellular composition of Mir146b-/- mice using flow cytometry revealed an increased number of neurons and a decreased abundancy of astroglia in the hippocampus and frontal cortex, whereas microglia abundancy remained unchanged. Immunohistochemistry showed a higher density of neurons in the frontal cortex of Mir146b-/- mice, enhanced hippocampal neurogenesis as evidenced by an increased proliferation, and survival of newly generated cells with enhanced maturation into neuronal phenotype. No microglial activation or signs of neuroinflammation were observed in Mir146b-/- mice. Further analysis demonstrated that miR-146b deficiency is associated with elevated expression of glial cell line-derived neurotrophic factor (Gdnf) mRNA in the hippocampus, which might be at least in part responsible for the observed neuronal expansion and the behavioral phenotype. This hypothesis is partially supported by the positive correlation between performance of mice in the object recognition test and Gdnf mRNA expression in Mir146b-/- mice. Together, these results show the distinct function of miR-146b in controlling behaviors and provide new insights in understanding cell-specific function of miR-146b in the neuronal and astroglial organization of the mouse brain.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , MicroRNAs , Animais , Cognição , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurogênese , RNA Mensageiro
4.
Clin Transl Med ; 11(6): e427, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185416

RESUMO

Rhinovirus (RV) infections are associated with asthma exacerbations. MicroRNA-146a and microRNA-146b (miR-146a/b) are anti-inflammatory miRNAs that suppress signaling through the nuclear factor kappa B (NF-κB) pathway and inhibit pro-inflammatory chemokine production in primary human bronchial epithelial cells (HBECs). In the current study, we aimed to explore whether miR-146a/b could regulate cellular responses to RVs in HBECs and airways during RV-induced asthma exacerbation. We demonstrated that expression of miR-146a/b and pro-inflammatory chemokines was increased in HBECs and mouse airways during RV infection. However, transfection with cell-penetrating peptide (CPP)-miR-146a nanocomplexes before infection with RV significantly reduced the expression of the pro-inflammatory chemokines CCL5, IL-8 and CXCL1, increased interferon-λ production, and attenuated infection with the green fluorescent protein (GFP)-expressing RV-A16 in HBECs. Concordantly, compared to wild-type (wt) mice, Mir146a/b-/- mice exhibited more severe airway neutrophilia and increased T helper (Th)1 and Th17 cell infiltration in response to RV-A1b infection and a stronger Th17 response with a less prominent Th2 response in house dust mite extract (HDM)-induced allergic airway inflammation and RV-induced exacerbation models. Interestingly, intranasal administration of CPP-miR-146a nanocomplexes reduced HDM-induced allergic airway inflammation without a significant effect on the Th2/Th1/Th17 balance in wild-type mice. In conclusion, the overexpression of miR-146a has a strong anti-inflammatory effect on RV infection in HBECs and a mouse model of allergic airway inflammation, while a lack of miR-146a/b leads to attenuated type 2 cell responses in mouse models of allergic airway inflammation and RV-induced exacerbation of allergic airway inflammation. Furthermore, our data indicate that the application of CPP-miR-146a nanocomplexes has therapeutic potential for targeting airway inflammation.


Assuntos
Asma/patologia , Hipersensibilidade/patologia , Inflamação/patologia , MicroRNAs/genética , Infecções por Picornaviridae/complicações , Células Th2/imunologia , Adulto , Alérgenos , Animais , Asma/etiologia , Asma/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia
5.
Biomaterials ; 262: 120316, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32896817

RESUMO

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators with potential therapeutic applications. miR-146a is a negative regulator of inflammatory processes in both tissue-resident and specialized immune cells and may therefore have therapeutic effect in inflammatory skin diseases. PepFect (PF) and NickFect (NF) type of cell-penetrating peptides (CPPs) have previously been shown to deliver miRNA mimics and/or siRNAs into cell cultures and in vivo. Here, we first demonstrate that selected PF- and NF-type of CPPs support delivery of fluorescent labelled miRNA mimics into keratinocytes (KCs) and dendritic cells (DCs). Second, we show that both PF- and NF-miR-146a nanocomplexes were equally effective in KCs, while NFs were more efficient in DCs as assessed by downregulation of miR-146a-influenced genes. None of miRNA nanocomplexes with the tested CPPs influenced the viability of KCs and DCs nor caused activation of DCs according to CD86 and CD83 markers. Transmission electron microscopy analysis with Nanogold-labelled miR-146a mimics and assessment of endocytic trafficking pathways revealed endocytosis as an active route of delivery in both KCs and DCs for all tested CPPs. However, consistent with the higher efficiency, NF-delivered miR-146a was detected more often outside endosomes in DCs. Finally, pre-injection of NF71:miR-146a nanocomplexes was confirmed to suppress inflammatory responses in a mouse model of irritant contact dermatitis as shown by reduced ear swelling response and downregulation of pro-inflammatory cytokines, including IL-6, IL-1ß, IL-33 and TNF-α. In conclusion, NF71 efficiently delivers miRNA mimics into KCs as well as DCs, and therefore may have advantage in therapeutic delivery of miRNAs in case of inflammatory skin diseases.


Assuntos
Peptídeos Penetradores de Células , MicroRNAs , Animais , Células Dendríticas , Inflamação , Queratinócitos , Camundongos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA