Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Brain Behav Immun ; 117: 428-446, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38336022

RESUMO

Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.


Assuntos
Infecções por HIV , Doenças do Sistema Nervoso , Humanos , Piroptose , Caspase 1 , Inflamação
2.
J Neurovirol ; 29(4): 377-388, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37418108

RESUMO

Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.


Assuntos
Infecções por HIV , Transtornos Relacionados ao Uso de Opioides , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Infecções por HIV/tratamento farmacológico , Macaca mulatta , HIV , Carga Viral
3.
PLoS Biol ; 18(5): e3000660, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453744

RESUMO

Increased life expectancy of patients diagnosed with HIV in the current era of antiretroviral therapy is unfortunately accompanied with the prevalence of HIV-associated neurocognitive disorders (HANDs) and risk of comorbidities such as Alzheimer-like pathology. HIV-1 transactivator of transcription (Tat) protein has been shown to induce the production of toxic neuronal amyloid protein and also enhance neurotoxicity. The contribution of astrocytes in Tat-mediated amyloidosis remains an enigma. We report here, in simian immunodeficiency virus (SIV)+ rhesus macaques and patients diagnosed with HIV, brain region-specific up-regulation of amyloid precursor protein (APP) and Aß (40 and 42) in astrocytes. In addition, we find increased expression of ß-site cleaving enzyme (BACE1), APP, and Aß in human primary astrocytes (HPAs) exposed to Tat. Mechanisms involved up-regulation of hypoxia-inducible factor (HIF-1α), its translocation and binding to the long noncoding RNA (lncRNA) BACE1-antisense transcript (BACE1-AS), resulting, in turn, in the formation of the BACE1-AS/BACE1 RNA complex, subsequently leading to increased BACE1 protein, and activity and generation of Aß-42. Gene silencing approaches confirmed the regulatory role of HIF-1α in BACE1-AS/BACE1 in Tat-mediated amyloidosis. This is the first report implicating the role of the HIF-1α/lncRNABACE1-AS/BACE1 axis in Tat-mediated induction of astrocytic amyloidosis, which could be targeted as adjunctive therapies for HAND-associated Alzheimer-like comorbidity.


Assuntos
Amiloidose/virologia , Astrócitos/metabolismo , Infecções por HIV/complicações , Transtornos Neurocognitivos/virologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Infecções por HIV/metabolismo , HIV-1 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macaca mulatta , Pessoa de Meia-Idade , Transtornos Neurocognitivos/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima
4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901763

RESUMO

HIV-1 infection in the era of combined antiretroviral therapy has been associated with premature aging. Among the various features of HIV-1 associated neurocognitive disorders, astrocyte senescence has been surmised as a potential cause contributing to HIV-1-induced brain aging and neurocognitive impairments. Recently, lncRNAs have also been implicated to play essential roles in the onset of cellular senescence. Herein, using human primary astrocytes (HPAs), we investigated the role of lncRNA TUG1 in HIV-1 Tat-mediated onset of astrocyte senescence. We found that HPAs exposed to HIV-1 Tat resulted in significant upregulation of lncRNA TUG1 expression that was accompanied by elevated expression of p16 and p21, respectively. Additionally, HIV-1 Tat-exposed HPAs demonstrated increased expression of senescence-associated (SA) markers-SA-ß-galactosidase (SA-ß-gal) activity and SA-heterochromatin foci-cell-cycle arrest, and increased production of reactive oxygen species and proinflammatory cytokines. Intriguingly, gene silencing of lncRNA TUG1 in HPAs also reversed HIV-1 Tat-induced upregulation of p21, p16, SA-ß gal activity, cellular activation, and proinflammatory cytokines. Furthermore, increased expression of astrocytic p16 and p21, lncRNA TUG1, and proinflammatory cytokines were observed in the prefrontal cortices of HIV-1 transgenic rats, thereby suggesting the occurrence of senescence activation in vivo. Overall, our data indicate that HIV-1 Tat-induced astrocyte senescence involves the lncRNA TUG1 and could serve as a potential therapeutic target for dampening accelerated aging associated with HIV-1/HIV-1 proteins.


Assuntos
Infecções por HIV , HIV-1 , RNA Longo não Codificante , Animais , Humanos , Ratos , Envelhecimento/metabolismo , Astrócitos/metabolismo , Senescência Celular , Citocinas/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Ratos Transgênicos , RNA Longo não Codificante/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana
5.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499350

RESUMO

HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 µM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1ß, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.


Assuntos
Cocaína , HIV-1 , MicroRNAs , Animais , Camundongos , HIV-1/genética , HIV-1/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Transativadores/metabolismo , MicroRNAs/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Microglia/metabolismo , Citocinas/metabolismo , Células Cultivadas
6.
Curr HIV/AIDS Rep ; 18(5): 459-474, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34427869

RESUMO

PURPOSE OF REVIEW: Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS: In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.


Assuntos
Infecções por HIV , Doenças do Sistema Nervoso , Transtornos Neurocognitivos , Complexo AIDS Demência , Animais , Modelos Animais de Doenças , Infecções por HIV/complicações , Humanos , Modelos Teóricos , Doenças do Sistema Nervoso/etiologia , Transtornos Neurocognitivos/etiologia
8.
J Neurosci ; 38(23): 5367-5383, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760177

RESUMO

The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cells resulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B, which were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat-exposed mouse primary microglial cells further confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3'-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3'-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3'-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling.SIGNIFICANCE STATEMENT Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins, such as HIV-1 Tat, can activate microglia is thus of paramount importance. This study demonstrated that HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6, resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.


Assuntos
Infecções por HIV/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Microglia/virologia , Fator de Transcrição STAT3/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , HIV-1 , Macaca mulatta , Masculino , Camundongos , MicroRNAs/genética , Microglia/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo
9.
Brain Behav Immun ; 80: 227-237, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872089

RESUMO

While the advent of combination antiretroviral therapy (cART) has dramatically increased the lifespan of people living with HIV-1 paradoxically, the prevalence of NeuroHIV in people treated with cART is on the rise. It has been well documented that despite the effectiveness of cART in suppressing viremia, CNS continues to harbor viral reservoirs with persistent low-level virus replication. This, in turn, leads to the presence and accumulation of early viral protein - HIV-1 Tat, that is a well-established cytotoxic agent. In the current study, we demonstrated that exposure of mouse microglia to HIV-1 Tat resulted both in a dose- and time-dependent upregulation of miRNA-34a, with concomitant downregulation of NLRC5 (a negative regulator of NFκB signaling) expression. Using bioinformatics analyses and Argonaute immunoprecipitation assay NLRC5 was identified as a novel target of miRNA-34a. Transfection of mouse primary microglia with miRNA-34a mimic significantly downregulated NLRC5 expression, resulting in increased expression of NFκB p65. In contrast, transfection of cells with miRNA-34a inhibitor upregulated NLRC5 levels. Using pharmacological approaches, our findings showed that HIV-1 Tat-mediated microglial activation involved miRNA-34a-mediated downregulation of NLRC5 with concomitant activation of NFκB signaling. Reciprocally, inhibition of miRNA-34a blocked HIV-1 Tat-mediated microglial activation. In summary, our findings identify yet another novel mechanism of HIV-1 Tat-mediated activation of microglia involving the miRNA-34a-NLRC5-NFκB axis. These in vitro findings were also validated in the medial prefrontal cortices of HIV-1 transgenic rats as well as in SIV-infected rhesus macaques. Overall, these findings reveal the involvement of miRNA-34a-NLRC5-NFκB signaling axis in HIV-1 Tat-mediated microglial inflammation.


Assuntos
Encefalite/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Feminino , Macaca mulatta , Masculino , Córtex Pré-Frontal/metabolismo , Cultura Primária de Células , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Regulação para Cima , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagem
10.
J Neurosci ; 37(13): 3599-3609, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28270571

RESUMO

Neuroinflammation associated with HIV-1 infection is a problem affecting ∼50% of HIV-infected individuals. NLR family pyrin domain containing 3 (NLRP3) inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Because HIV-1 Transactivator of Transcription (Tat) protein continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1ß levels and enhanced the IL-1ß secretion. These in vitro findings were validated in archival brain tissues from Simian Immunodeficiency Virus (SIV)-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in vivo involved administration of lipopolysaccharide (LPS) to HIV transgenic (Tg) rats followed by assessment of IL-1ß mRNA expression and inflammasome activation (ASC oligomers and mature IL-1ß). Intriguingly, LPS potentiated upregulation of IL-1ß mRNA and inflammasome activation in HIV-Tg rats compared with the wild-type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1ß secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Therefore, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation.SIGNIFICANCE STATEMENT Despite successful suppression of viremia with increased longevity in the era of combined antiretroviral therapy, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial, and cellular products have all been implicated in promoting the chronic inflammation found in these individuals. Understanding the molecular mechanism(s) by which viral proteins such as HIV-1 Transactivator of Transcription (Tat) protein can activate microglia is thus of paramount importance. Herein, we demonstrate a novel role of Tat in priming and activating NLR family pyrin domain containing 3 (NLRP3) inflammasomes in microglial cells and in HIV-Tg rats administered lipopolysaccharide. Targeting NLRP3 inflammasome pathway mediators could thus be developed as therapeutic interventions to alleviate or prevent neuroinflammation and subsequent cognitive impairment in HIV-positive patients.


Assuntos
Encéfalo/imunologia , Encefalite Viral/imunologia , Inflamassomos/imunologia , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Animais , Citocinas/imunologia , Feminino , Mediadores da Inflamação/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Ratos , Ratos Transgênicos
11.
J Neurovirol ; 21(5): 592-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26037114

RESUMO

The abuse of opiates such as morphine in synergy with HIV infection accelerates neurocognitive impairments and neuropathology in the CNS of HIV-infected subjects, collectively referred to as HAND. To identify potential pathogenic markers associated with HIV and morphine in perturbing the synaptic architecture, we performed quantitative mass spectrometry proteomics on purified synaptosomes isolated from the caudate of two groups of rhesus macaques chronically infected with SIV differing by one regimen-morphine treatment. The upregulation of heat shock 70-kDa protein 5 in the SIV + morphine group points to increased cellular stress during SIV/morphine interaction thus leading to CNS dysfunction.


Assuntos
Analgésicos Opioides/toxicidade , Proteínas de Choque Térmico/biossíntese , Morfina/toxicidade , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Sinapses/metabolismo , Animais , Western Blotting , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Humanos , Macaca mulatta , Neurônios/efeitos dos fármacos , Proteômica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sinapses/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Regulação para Cima
12.
Viruses ; 16(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38932195

RESUMO

Antiretroviral treatments have notably extended the lives of individuals with HIV and reduced the occurrence of comorbidities, including ocular manifestations. The involvement of endoplasmic reticulum (ER) stress in HIV-1 pathogenesis raises questions about its correlation with cellular senescence or its role in initiating senescent traits. This study investigated how ER stress and dysregulated autophagy impact cellular senescence triggered by HIV-1 Tat in the MIO-M1 cell line (human Müller glial cells). Cells exposed to HIV-1 Tat exhibited increased vimentin expression combined with markers of ER stress (BiP, p-eIF2α), autophagy (LC3, Beclin-1, p62), and the senescence marker p21 compared to control cells. Western blotting and staining techniques like SA-ß-gal were employed to examine these markers. Additionally, treatments with ER stress inhibitor 4-PBA before HIV-1 Tat exposure led to a decreased expression of ER stress, senescence, and autophagy markers. Conversely, pre-treatment with the autophagy inhibitor 3-MA resulted in reduced autophagy and senescence markers but did not alter ER stress markers compared to control cells. The findings suggest a link between ER stress, dysregulated autophagy, and the initiation of a senescence phenotype in MIO-M1 cells induced by HIV-1 Tat exposure.


Assuntos
Autofagia , Senescência Celular , Estresse do Retículo Endoplasmático , HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , HIV-1/fisiologia , Linhagem Celular , Células Ependimogliais/metabolismo , Células Ependimogliais/virologia , Infecções por HIV/virologia
13.
Cells ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891030

RESUMO

NeuroHIV affects approximately 30-60% of people living with HIV-1 (PLWH) and is characterized by varying degrees of cognitive impairments, presenting a multifaceted challenge, the underlying cause of which is chronic, low-level neuroinflammation. Such smoldering neuroinflammation is likely an outcome of lifelong reliance on antiretrovirals coupled with residual virus replication in the brains of PLWH. Despite advancements in antiretroviral therapeutics, our understanding of the molecular mechanism(s) driving inflammatory processes in the brain remains limited. Recent times have seen the emergence of non-coding RNAs (ncRNAs) as critical regulators of gene expression, underlying the neuroinflammatory processes in HIV infection, NeuroHIV, and their associated comorbidities. This review explores the role of various classes of ncRNAs and their regulatory functions implicated in HIV infection, neuropathogenesis, and related conditions. The dysregulated expression of ncRNAs is known to exacerbate the neuroinflammatory responses, thus contributing to neurocognitive impairments in PLWH. This review also discusses the diagnostic and therapeutic potential of ncRNAs in HIV infection and its comorbidities, suggesting their utility as non-invasive biomarkers and targets for modulating neuroinflammatory pathways. Understanding these regulatory roles could pave the way for novel diagnostic strategies and therapeutic interventions in the context of HIV and its comorbidities.


Assuntos
Comorbidade , Infecções por HIV , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , Infecções por HIV/complicações , HIV-1/genética
14.
J Clin Med ; 12(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373618

RESUMO

Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.

15.
Redox Biol ; 62: 102689, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023693

RESUMO

This study was focused on exploring the role of the HIV-1 Tat protein in mediating microglial ferroptosis. Exposure of mouse primary microglial cells (mPMs) to HIV-1 Tat protein resulted in induction of ferroptosis, which was characterized by increased expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), in turn, leading to increased generation of oxidized phosphatidylethanolamine, elevated levels of lipid peroxidation, upregulated labile iron pool (LIP) and ferritin heavy chain-1 (FTH1), decreased glutathione peroxidase-4 and mitochondrial outer membrane rupture. Also, inhibition of ferroptosis by ferrostatin-1 (Fer-1) or deferoxamine (DFO) treatment suppressed ferroptosis-related changes in mPMs. Similarly, the knockdown of ACSL4 by gene silencing also inhibited ferroptosis induced by HIV-1 Tat. Furthermore, increased lipid peroxidation resulted in increased release of proinflammatory cytokines, such as TNFα, IL6, and IL1ß and microglial activation. Pretreatment of mPMs with Fer-1 or DFO further blocked HIV-1 Tat-mediated microglial activation in vitro and reduced the expression and release of proinflammatory cytokines. We identified miR-204 as an upstream modulator of ACSL4, which was downregulated in mPMs exposed to HIV-1 Tat. Transient transfection of mPMs with miR-204 mimics reduced the expression of ACSL4 while inhibiting HIV-1 Tat-mediated ferroptosis and the release of proinflammatory cytokines. These in vitro findings were further validated in HIV-1 transgenic rats as well as HIV + ve human brain samples. Overall, this study underscores a novel mechanism(s) underlying HIV-1 Tat-mediated ferroptosis and microglial activation involving miR-204-ACSL4 signaling.


Assuntos
Ferroptose , HIV-1 , MicroRNAs , Animais , Humanos , Camundongos , Ratos , Coenzima A Ligases , Citocinas/metabolismo , Produtos do Gene tat/metabolismo , HIV-1/genética , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Transgênicos
16.
Adv Drug Alcohol Res ; 3: 11092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38389809

RESUMO

Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.

17.
J Neuroimmune Pharmacol ; 18(3): 327-347, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148425

RESUMO

Despite the ability of combination antiretroviral therapy (cART) to suppress viremia, there is persistence low levels of HIV proteins such as Transactivator of transcription (Tat) in the central nervous system (CNS), contributing to glial activation and neuroinflammation. Accumulating evidence also implicates the role of drugs of abuse in exacerbating neurological complications associated with HIV-1. The combined effects of HIV Tat, drugs of abuse, and cART can thus create a toxic milieu in the CNS. The present study investigated the combinatorial effects of HIV-Tat, cocaine, and cART on autophagy and NLRP3 inflammasome activation. We selected a combination of three commonly used cART regimens: tenofovir, emtricitabine, and dolutegravir. Our results demonstrated that exposure of mouse primary microglia (MPMs) to these agents-HIV Tat (25 ng/ml), cocaine (1 µM), and cART (1 µM each) resulted in upregulation of autophagy markers: Beclin1, LC3B-II, and SQSTM1 with impaired lysosomal functioning involving increased lysosomal pH, decreased LAMP2 and cathepsin D, ultimately leading to dysregulated autophagy. Our findings also demonstrated activation of the NLRP3 signaling in microglia exposed to these agents. We further demonstrated that gene silencing of key autophagy protein BECN1 significantly blocked NLRP3-mediated activation of microglia. Silencing of NLRP3, however, failed to block HIV Tat, cocaine, and cART-mediated dysregulation of the autophagy-lysosomal axis; these in vitro phenomena were also validated in vivo using iTat mice administered cocaine and cART. This study thus underscores the cooperative effects of HIV Tat, cocaine, and cART in exacerbating microglial activation involving dysregulated autophagy and activation of the NLRP3 inflammasome signaling.


Assuntos
Cocaína , Infecções por HIV , Camundongos , Animais , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cocaína/farmacologia , Inflamassomos/metabolismo , Transativadores/metabolismo , Transativadores/farmacologia , Autofagia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/metabolismo
18.
Viruses ; 15(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36680084

RESUMO

Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Transtornos Relacionados ao Uso de Substâncias , Humanos , Doenças Neuroinflamatórias , Infecções por HIV/tratamento farmacológico , Autofagia , Inflamação/complicações , Transtornos Relacionados ao Uso de Substâncias/complicações
19.
Front Immunol ; 13: 1012884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466814

RESUMO

The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.


Assuntos
Infecções por HIV , Morfina , Animais , Morfina/farmacologia , Osteopontina/genética , Encéfalo , Analgésicos Opioides , Antirretrovirais , Macaca , Expressão Gênica
20.
Mol Neurobiol ; 58(5): 2215-2230, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417223

RESUMO

Cocaine use disorder is a major health crisis that is associated with increased oxidative stress and neuroinflammation. While the role of NLRP3 inflammasome in mediating neuroinflammation is well-recognized, whether cocaine induces this response remains unexplored. Based on the premise that cocaine induces both reactive oxygen species (ROS) as well as microglial activation, we hypothesized that cocaine-mediated microglial activation involves both ROS and NLRP3 signaling pathways. We examined activation of the NLRP3 pathway in microglia exposed to cocaine, followed by validation in mice administered either cocaine or saline for 7 days, with or without pretreatment with the NLRP3 inhibitor, MCC950, and in postmortem cortical brain tissues of chronic cocaine-dependent humans. We found that microglia exposed to cocaine exhibited significant induction of NLRP3 and mature IL-1ß expression. Intriguingly, blockade of ROS (Tempol) attenuated cocaine-mediated priming of NLRP3 and microglial activation (CD11b). Blockade of NLRP3 by both pharmacological (MCC950) as well as gene silencing (siNLRP3) approaches underpinned the critical role of NLRP3 in cocaine-mediated activation of inflammasome and microglial activation. Pretreatment of mice with MCC950 followed by cocaine administration for 7 days mitigated cocaine-mediated upregulation of mature IL-1ß and CD11b, in both the striatum and the cortical regions. Furthermore, cortical brain tissues of chronic cocaine-dependent humans also exhibited upregulated expression of the NLRP3 pathway mediators compared with non-cocaine dependent controls. Collectively, these findings suggest that cocaine activates microglia involving the NLRP3 inflammasome pathway, thereby contributing to neuroinflammation. NLRP3 can thus be considered as a potential therapeutic target for alleviating cocaine-mediated neuroinflammation.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Lobo Frontal/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caspase 1/metabolismo , Linhagem Celular , Lobo Frontal/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA