Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (184)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35758664

RESUMO

In recent years, chemically modified messenger RNA (mRNA) has emerged as a potent nucleic acid molecule for developing a wide range of therapeutic applications, including a novel class of vaccines, protein replacement therapies, and immune therapies. Among delivery vectors, lipid nanoparticles are found to be safer and more effective in delivering RNA molecules (e.g., siRNA, miRNA, mRNA) and a few products are already in clinical use. To demonstrate lipid nanoparticle-mediated mRNA delivery, we present an optimized protocol for the synthesis of functional me1Ψ-UTP modified eGFP mRNA, the preparation of cationic liposomes, the electrostatic complex formation of mRNA with cationic liposomes, and the evaluation of transfection efficiencies in mammalian cells. The results demonstrate that these modifications efficiently improved the stability of mRNA when delivered with cationic liposomes and increased the eGFP mRNA translation efficiency and stability in mammalian cells. This protocol can be used to synthesize the desired mRNA and transfect with cationic liposomes for target gene expression in mammalian cells.


Assuntos
Lipossomos , Nanopartículas , Animais , Cátions , Lipossomos/química , Mamíferos/metabolismo , Nanopartículas/química , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA