Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Chem Biol ; 13(4): 409-414, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166209

RESUMO

The metal affinities of metal-sensing transcriptional regulators co-vary with cellular metal concentrations over more than 12 orders of magnitude. To understand the cause of this relationship, we determined the structure of the Ni(II) sensor InrS and then created cyanobacteria (Synechocystis PCC 6803) in which transcription of genes encoding a Ni(II) exporter and a Ni(II) importer were controlled by InrS variants with weaker Ni(II) affinities. Variant strains were sensitive to elevated nickel and contained more nickel, but the increase was small compared with the change in Ni(II) affinity. All of the variant sensors retained the allosteric mechanism that inhibits DNA binding following metal binding, but a response to nickel in vivo was observed only when the sensitivity was set to respond in a relatively narrow (less than two orders of magnitude) range of nickel concentrations. Thus, the Ni(II) affinity of InrS is attuned to cellular metal concentrations rather than the converse.


Assuntos
Níquel/análise , Níquel/química , Proteínas Repressoras/química , Soluções Tampão , Modelos Moleculares , Níquel/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Synechocystis/metabolismo
2.
Plant Mol Biol ; 92(1-2): 57-69, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27325117

RESUMO

Many cyanobacteria secrete siderophores to sequester iron. Alternatively, mechanisms to utilize xenosiderophores have evolved. The overall uptake systems are comparable to that of other bacteria involving outer membrane transporters energized by TonB as well as plasma membrane-localized transporters. However, the function of the bioinformatically-inferred components is largely not established and recent studies showed a high diversity of the complexity of the uptake systems in different cyanobacteria. Thus, we approached the systems of the filamentous Anabaena sp. PCC 7120 as a model of a siderophore-secreting cyanobacterium. Anabaena sp. produces schizokinen and uptake of Fe-schizokinen involves the TonB-dependent transporter, schizokinen transporter (SchT), and the ABC-type transport system FhuBCD. We confirm that this system is also relevant for the uptake of structurally similar Fe-siderophore complexes like Fe-aerobactin. Moreover, we demonstrate a function of the TonB-dependent transporter IutA2 in Fe-schizokinen uptake in addition to SchT. The iutA2 mutant shows growth defects upon iron limitation, alterations in Fe-schizokinen uptake and in the transcription profile of the Fe-schizokinen uptake system. The physiological properties of the mutant confirm the importance of iron uptake for cellular function, e.g. for the Krebs cycle. Based on the relative relation of expression of schT and iutA2 as well as of the iron uptake rate to the degree of starvation, a model for the need of the co-existence of two different outer membrane transporters for the same substrate is discussed.


Assuntos
Anabaena/metabolismo , Sideróforos/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo
3.
Mol Microbiol ; 92(4): 797-812, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24666373

RESUMO

InrS is a Ni(II)-responsive, CsoR/RcnR-like, DNA-binding transcriptional repressor of the nrsD gene, but the Ni(II) co-ordination sphere of InrS is unlike Ni(II)-RcnR. We show that copper and Zn(II) also bind tightly to InrS and in vitro these ions also impair InrS binding to the nrsD operator-promoter. InrS does not respond to Zn(II) (or copper) in vivo after 48 h, when Zn(II) sensor ZiaR responds, but InrS transiently responds (1 h) to both metals. InrS conserves only one (of two) second co-ordination shell residues of CsoR (Glu98 in InrS). The allosteric mechanism of InrS is distinct from Cu(I)-CsoR and conservation of deduced second shell residues better predicts metal specificity than do the metal ligands. The allosteric mechanism of InrS permits greater promiscuity in vitro than CsoR. The factors dictating metal-selectivity in vivo are that KNi(II) and ΔG(C)(Ni(II)-InrS·DNA) are sufficiently high, relative to other metal sensors, for InrS to detect Ni(II), while the equivalent parameters for copper may be insufficient for copper-sensing in Synechocystis (at 48 h). InrS K(Zn(II)) (5.6 × 10(-13) M) is comparable to the sensory sites of ZiaR (and Zur), but ΔG(C)(Zn(II)-InrS·DNA) is less than ΔG(C)(Zn(II)-ZiaR·DNA) implying that relative to other sensors, ΔG(C)(Zn(II)-Sensor·DNA) rather than K(Zn(II)) determines the final detection threshold for Zn(II).


Assuntos
Cobre/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Synechocystis/metabolismo , Zinco/metabolismo , Ligação Proteica , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 109(1): 95-100, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22198771

RESUMO

Copper metallochaperones supply copper to cupro-proteins through copper-mediated protein-protein-interactions and it has been hypothesized that metallochaperones thereby inhibit copper from causing damage en route. Evidence is presented in support of this latter role for cyanobacterial metallochaperone, Atx1. In cyanobacteria Atx1 contributes towards the supply of copper to plastocyanin inside thylakoids but it is shown here that in copper-replete medium, copper can reach plastocyanin without Atx1. Unlike metallochaperone-independent copper-supply to superoxide dismutase in eukaryotes, glutathione is not essential for Atx1-independent supply to plastocyanin: Double mutants missing atx1 and gshB (encoding glutathione synthetase) accumulate the same number of atoms of copper per cell in the plastocyanin pool as wild type. Critically, Δatx1ΔgshB are hypersensitive to elevated copper relative to wild type cells and also relative to ΔgshB single mutants with evidence that hypersensitivity arises due to the mislocation of copper to sites for other metals including iron and zinc. The zinc site on the amino-terminal domain (ZiaA(N)) of the P(1)-type zinc-transporting ATPase is especially similar to the copper site of the Atx1 target PacS(N), and ZiaA(N) will bind Cu(I) more tightly than zinc. An NMR model of a substituted-ZiaA(N)-Cu(I)-Atx1 heterodimer has been generated making it possible to visualize a juxtaposition of residues surrounding the ZiaA(N) zinc site, including Asp(18), which normally repulse Atx1. Equivalent repulsion between bacterial copper metallochaperones and the amino-terminal regions of P(1)-type ATPases for metals other than Cu(I) is conserved, again consistent with a role for copper metallochaperones to withhold copper from binding sites for other metals.


Assuntos
Cobre/toxicidade , Metalochaperonas/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/farmacologia , Meios de Cultura/farmacologia , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Modelos Moleculares , Mutação/genética , Plastocianina/metabolismo , Ligação Proteica/efeitos dos fármacos , Zinco/metabolismo
5.
Microb Cell ; 11: 16-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234586

RESUMO

Low availability of micronutrients such as iron has enforced the evolution of uptake systems in all kingdoms of life. In Gram-negative bacteria, outer membrane, periplasmatic and plasma membrane localized proteins facilitate the uptake of iron-loaded chelators, which are energized by TonB proteins. The specificity of different uptake systems likely depends either on the endogenously produced siderophore or on the bioavailability of iron-chelator complexes in the environment. Hence, an uptake system for schizokinen produced by the model cyanobacterium Anabaena sp. PCC 7120 exists, while bioinformatics analysis suggests the existence of additional systems, likely for uptake of xenosiderophores. Consistently, proteins encoded by alr2153 (hutA1) and alr3242 (hutA2) are assigned as outer membrane heme transporters. Indeed, Anabaena sp. PCC 7120 can utilize external heme as an iron source. The addition of heme resulted in an induction of genes involved in heme degradation and chlorophyll a synthesis and in an increase of the chlorophyll a content. Moreover, iron starvation induced the expression of hutA1, while the addition of heme led to its repression. Remarkably, the addition of a high concentration of heme but not iron starvation resulted in hutA2 induction. Plasmid insertion mutants of both genes exhibited a reduced capacity to recover from iron starvation by heme addition, which indicates a dependence of heme uptake on functional HutA1 and HutA2 proteins. The structural model generated by bioinformatics methods is further in agreement with a role in heme uptake. Thus, we provide evidence that Anabaena sp. PCC 7120 uses a heme uptake system in parallel to other iron acquisition systems.

6.
Microb Cell ; 11: 41-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379927

RESUMO

Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Macromolecular machines facilitate metal uptake into the cells and their intracellular level is regulated by multiple means, which can involve RNA elements and proteinaceous components. While the general principles and components for uptake and cellular content regulation of, e.g., cobalt have been identified for proteobacteria, the corresponding mechanism in other Gram-negative bacteria such as cyanobacteria remain to be established. Based on their photosynthetic activity, cyanobacteria are known to exhibit a special metal demand in comparison to other bacteria. Here, the regulation by cobalt and cobalamin as well as their uptake is described for Anabaena sp. PCC 7120, a model filamentous heterocyst-forming cyanobacterium. Anabaena contains at least three cobalamin riboswitches in its genome, for one of which the functionality is confirmed here. Moreover, two outer membrane-localized cobalamin TonB-dependent transporters, namely BtuB1 and BtuB2, were identified. BtuB2 is important for fast uptake of cobalamin under conditions with low external cobalt, whereas BtuB1 appears to function in cobalamin uptake under conditions of sufficient cobalt supply. While the general function is comparable, the specific function of the two genes differs and mutants thereof show distinct phenotypes. The uptake of cobalamin depends further on the TonB and a BtuFCD machinery, as mutants of tonB3 and btuD show reduced cobalamin uptake rates. Thus, our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.

7.
J Biol Chem ; 287(15): 12142-51, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22356910

RESUMO

Efflux of surplus Ni(II) across the outer and inner membranes of Synechocystis PCC 6803 is mediated by the Nrs system under the control of a sensor of periplasmic Ni(II), NrsS. Here, we show that the product of ORF sll0176, which encodes a CsoR/RcnR-like protein now designated InrS (for internal nickel-responsive sensor), represses nrsD (NrsD is deduced to efflux Ni(II) across the inner membrane) from a cryptic promoter between the final two ORFs in the nrs operon. Transcripts initiated from the newly identified nrsD promoter accumulate in response to nickel or cobalt but not copper, and recombinant InrS forms specific, Ni(II)-inhibited complexes with the nrsD promoter region. Metal-dependent difference spectra of Ni(II)- and Cu(I)-InrS are similar to Cu(I)-sensing CsoR and dissimilar to Ni(II)/Co(II)-sensing RcnR, consistent with factors beyond the primary coordination sphere switching metal selectivity. Competition with chelators mag-fura-2, nitrilotriacetic acid, EDTA, and EGTA estimate K(D) Ni(II) for the tightest site of InrS as 2.05 (±1.5) × 10(-14) m, and weaker K(D) Ni(II) for the cells' metal sensors of other types: Zn(II) co-repressor Zur, Co(II) activator CoaR, and Zn(II) derepressor ZiaR. Ni(II) transfer to InrS occurs upon addition to Ni(II) forms of each other sensor. InrS binds Ni(II) sufficiently tightly to derepress Ni(II) export at concentrations below K(D) Ni(II) of the other sensors.


Assuntos
Proteínas de Bactérias/química , Metaloproteínas/química , Níquel/química , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Quelantes/química , Cobalto/química , Sequência Consenso , Complexos de Coordenação/química , Cobre/química , Citosol/metabolismo , Regulação Bacteriana da Expressão Gênica , Metaloproteínas/genética , Metaloproteínas/metabolismo , Regiões Operadoras Genéticas , Óperon , Fenótipo , Ligação Proteica , Análise de Sequência de DNA , Espectrofotometria Ultravioleta , Sítio de Iniciação de Transcrição , Transcrição Gênica
8.
J Bacteriol ; 192(19): 5165-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675483

RESUMO

In the diazotrophic filaments of heterocyst-forming cyanobacteria, an exchange of metabolites takes place between vegetative cells and heterocysts that results in a net transfer of reduced carbon to the heterocysts and of fixed nitrogen to the vegetative cells. Open reading frame alr2355 of the genome of Anabaena sp. strain PCC 7120 is the ald gene encoding alanine dehydrogenase. A strain carrying a green fluorescent protein (GFP) fusion to the N terminus of Ald (Ald-N-GFP) showed that the ald gene is expressed in differentiating and mature heterocysts. Inactivation of ald resulted in a lack of alanine dehydrogenase activity, a substantially decreased nitrogenase activity, and a 50% reduction in the rate of diazotrophic growth. Whereas production of alanine was not affected in the ald mutant, in vivo labeling with [14C]alanine (in whole filaments and isolated heterocysts) or [14C]pyruvate (in whole filaments) showed that alanine catabolism was hampered. Thus, alanine catabolism in the heterocysts is needed for normal diazotrophic growth. Our results extend the significance of a previous work that suggested that alanine is transported from vegetative cells into heterocysts in the diazotrophic Anabaena filament.


Assuntos
Alanina Desidrogenase/metabolismo , Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Alanina/metabolismo , Alanina Desidrogenase/genética , Anabaena/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Microscopia Confocal , Ácido Pirúvico/metabolismo
9.
J Bacteriol ; 192(22): 6089-92, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851902

RESUMO

In the cyanobacterium Anabaena sp. strain PCC 7120, open reading frames (ORFs) alr3026, alr3027, and all3028 encode a tripartite ATP-independent periplasmic transporter (TRAP-T). Wild-type filaments showed significant uptake of [(14)C]pyruvate, which was impaired in the alr3027 and all3028 mutants and was inhibited by several monocarboxylate 2-oxoacids, identifying this TRAP-T system as a pyruvate/monocarboxylate 2-oxoacid transporter.


Assuntos
Anabaena/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Pirúvico/metabolismo , Radioisótopos de Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Inibidores Enzimáticos/metabolismo , Deleção de Genes , Mutagênese Insercional , Coloração e Rotulagem
10.
Mol Microbiol ; 74(1): 58-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19703111

RESUMO

The multicellular Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N(2) in differentiated cells called heterocysts, which exchange nutritional and regulatory compounds with the neighbour photosynthetic vegetative cells. The outer membrane of this bacterium is continuous along the filament defining a continuous periplasmic space. The Anabaena alr0075, alr2269 and alr4893 gene products were characterized as Omp85-like proteins, which are generally involved in outer membrane protein biogenesis. Open reading frame alr2269 is the first gene of an operon that also carries genes for lipopolysaccharide lipid A biosynthesis including alr2270 (an lpxC homologue). Strains carrying inactivating alr2269 or alr2270 constructs showed enhanced sensitivity to erythromycin, SDS, lysozyme and proteinase K suggesting that they produce an outer membrane with increased permeability. These strains further exhibited increased uptake of sucrose, glutamate and, to a lesser extent, a few other amino acids. Increased uptake of the same metabolites was obtained by mechanical fragmentation of wild-type Anabaena filaments. These results document that the outer membrane is a permeability barrier for metabolites such as sucrose and glutamate, which are subjected to intercellular exchange in the diazotrophic filament of heterocyst-forming cyanobacteria.


Assuntos
Anabaena/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Aminoácidos/metabolismo , Anabaena/genética , Anabaena/ultraestrutura , Proteínas da Membrana Bacteriana Externa/genética , Permeabilidade da Membrana Celular , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Genes Bacterianos , Mutagênese Insercional , Fases de Leitura Aberta , Periplasma/metabolismo , Plasmídeos
11.
Mol Microbiol ; 67(5): 1067-80, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18208492

RESUMO

Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N(2) in differentiated cells called heterocysts. Anabaena open reading frames alr4167 and alr3187 encode, respectively, an ATPase subunit, BgtA, and a composite protein bearing periplasmic substrate-binding and transmembrane domains, BgtB, of an ABC-type high-affinity basic amino acid uptake transporter (Bgt). Open reading frame alr4167 is clustered with open reading frames alr4164, alr4165 and alr4166 that encode a periplasmic substrate-binding protein, NatF, and transmembrane proteins NatG and NatH respectively. The NatF, NatG, NatH and BgtA proteins constitute an ABC-type uptake transporter for acidic and neutral polar amino acids (N-II). The Bgt and N-II transport systems thus share the ATPase subunit, BgtA. These transporters together with the previously characterized ABC-type uptake transporter for proline and hydrophobic amino acids (N-I) account for more than 98% of the amino acid transport activity exhibited by Anabaena sp. strain PCC 7120. In contrast to N-I that is expressed only in vegetative cells, the Bgt and N-II systems are present in both vegetative cells and heterocysts. Whereas Bgt is dispensable for diazotrophic growth, N-II appears to contribute together with N-I to the diazotrophic physiology of this cyanobacterium.


Assuntos
Adenosina Trifosfatases/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Anabaena/metabolismo , Transporte Biológico , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Sistemas de Transporte de Aminoácidos/análise , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Anabaena/citologia , Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Fixação de Nitrogênio , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
12.
Life (Basel) ; 9(2)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987221

RESUMO

Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N2 fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O2 evolution and CO2 fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N2 fixation, H2 metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.

13.
Life (Basel) ; 5(2): 1282-300, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25915115

RESUMO

Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

14.
mBio ; 6(4): e00376, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26126850

RESUMO

UNLABELLED: Filamentous, heterocyst-forming cyanobacteria exchange nutrients and regulators between cells for diazotrophic growth. Two alternative modes of exchange have been discussed involving transport either through the periplasm or through septal junctions linking adjacent cells. Septal junctions and channels in the septal peptidoglycan are likely filled with septal junction complexes. While possible proteinaceous factors involved in septal junction formation, SepJ (FraG), FraC, and FraD, have been identified, little is known about peptidoglycan channel formation and septal junction complex anchoring to the peptidoglycan. We describe a factor, SjcF1, involved in regulation of septal junction channel formation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. SjcF1 interacts with the peptidoglycan layer through two peptidoglycan-binding domains and is localized throughout the cell periphery but at higher levels in the intercellular septa. A strain with an insertion in sjcF1 was not affected in peptidoglycan synthesis but showed an altered morphology of the septal peptidoglycan channels, which were significantly wider in the mutant than in the wild type. The mutant was impaired in intercellular exchange of a fluorescent probe to a similar extent as a sepJ deletion mutant. SjcF1 additionally bears an SH3 domain for protein-protein interactions. SH3 binding domains were identified in SepJ and FraC, and evidence for interaction of SjcF1 with both SepJ and FraC was obtained. SjcF1 represents a novel protein involved in structuring the peptidoglycan layer, which links peptidoglycan channel formation to septal junction complex function in multicellular cyanobacteria. Nonetheless, based on its subcellular distribution, this might not be the only function of SjcF1. IMPORTANCE: Cell-cell communication is central not only for eukaryotic but also for multicellular prokaryotic systems. Principles of intercellular communication are well established for eukaryotes, but the mechanisms and components involved in bacteria are just emerging. Filamentous heterocyst-forming cyanobacteria behave as multicellular organisms and represent an excellent model to study prokaryotic cell-cell communication. A path for intercellular metabolite exchange appears to involve transfer through molecular structures termed septal junctions. They are reminiscent of metazoan gap junctions that directly link adjacent cells. In cyanobacteria, such structures need to traverse the peptidoglycan layers in the intercellular septa of the filament. Here we describe a factor involved in the formation of channels across the septal peptidoglycan layers, thus contributing to the multicellular behavior of these organisms.


Assuntos
Anabaena/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Peptidoglicano/metabolismo , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Proteínas de Membrana/genética , Mutagênese Insercional , Fixação de Nitrogênio , Ligação Proteica
15.
Metallomics ; 5(4): 352-62, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23420021

RESUMO

The MerR-like transcriptional activator CoaR detects surplus Co(ll) to regulate Co(ll) efflux in a cyanobacterium. This organism also has cytosolic metal-sensors from three further families represented by Zn(ll)-sensors ZiaR and Zur plus Ni(ll)-sensor InrS. Here we discover by competition with Fura-2 that CoaR has KCo(ll) weaker than 7 × 10(-8) M, which is weaker than ZiaR, Zur and InrS (KCo(ll) = 6.94 ± 1.3 × 10(-10) M; 4.56 ± 0.16 × 10(-10) M; and 7.69 ± 1.1 × 10(-9) M respectively). KCo(ll) for CoaR is also weak in the CoaR-DNA adduct. Further, Co(ll) promotes DNA-dissociation by ZiaR and DNA-association by Zur in vitro in a manner analogous to Zn(ll), as monitored by fluorescence anisotropy. After 48 h exposure to maximum non-inhibitory [Co(ll)], CoaR responds in vivo yet the two Zn(ll)-sensors do not, despite their tighter KCo(ll) and despite Co(ll) triggering allostery in ZiaR and Zur in vitro. These data imply that the two Zn(ll) sensors fail to respond because they fail to gain access to Co(ll) under these conditions in vivo. Several lines of evidence suggest that CoaR is membrane associated via a domain with sequence similarity to precorrin isomerase, an enzyme of vitamin B12 biosynthesis. Moreover, site directed mutagenesis reveals that transcriptional activation requires CoaR residues that are predicted to form hydrogen bonds to a tetrapyrrole. The Co(ll)-requiring vitamin B12 biosynthetic pathway is also membrane associated suggesting putative mechanisms by which Co(ll)-containing tetrapyrroles and/or Co(ll) ions are channelled to CoaR.


Assuntos
Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Synechocystis/metabolismo , Regulação Alostérica/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Cobalto/farmacologia , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucosídeos/metabolismo , Cinética , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Fluorescência , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Tetrapirróis/metabolismo , Titulometria , Uroporfirinas/metabolismo
16.
J Bacteriol ; 189(21): 7887-95, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17720784

RESUMO

The filamentous cyanobacterium Anabaena sp. strain PCC 7120 forms heterocysts in a semiregular pattern when it is grown on N2 as the sole nitrogen source. The transition from vegetative cells to heterocysts requires marked metabolic and morphological changes. We show that a trimeric pore-forming outer membrane beta-barrel protein belonging to the TolC family, Alr2887, is up-regulated in developing heterocysts and is essential for diazotrophic growth. Mutants defective in Alr2887 did not form the specific glycolipid layer of the heterocyst cell wall, which is necessary to protect nitrogenase from external oxygen. Comparison of the glycolipid contents of wild-type and mutant cells indicated that the protein is not involved in the synthesis of glycolipids but might instead serve as an exporter for the glycolipid moieties or enzymes involved in glycolipid attachment. We propose that Alr2887, together with an ABC transporter like DevBCA, is part of a protein export system essential for assembly of the heterocyst glycolipid layer. We designate the alr2887 gene hgdD (heterocyst glycolipid deposition protein).


Assuntos
Anabaena/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Anabaena/classificação , Anabaena/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Primers do DNA , Marcadores Genéticos , Genótipo , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Plasmídeos , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação
17.
J Bacteriol ; 189(10): 3884-90, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17369306

RESUMO

Heterocysts, formed when filamentous cyanobacteria, such as Anabaena sp. strain PCC 7120, are grown in the absence of combined nitrogen, are cells that are specialized in fixing atmospheric nitrogen (N(2)) under oxic conditions and that transfer fixed nitrogen to the vegetative cells of the filament. Anabaena sp. mutants whose sepJ gene (open reading frame alr2338 of the Anabaena sp. genome) was affected showed filament fragmentation and arrested heterocyst differentiation at an early stage. In a sepJ insertional mutant, a layer similar to a heterocyst polysaccharide layer was formed, but the heterocyst-specific glycolipids were not synthesized. The sepJ mutant did not exhibit nitrogenase activity even when assayed under anoxic conditions. In contrast to proheterocysts produced in the wild type, those produced in the sepJ mutant still divided. SepJ is a multidomain protein whose N-terminal region is predicted to be periplasmic and whose C-terminal domain resembles an export permease. Using a green fluorescent protein translationally fused to the carboxyl terminus of SepJ, we observed that in mature heterocysts and vegetative cells, the protein is localized at the intercellular septa, and when cell division starts, it is localized in a ring whose position is similar to that of a Z ring. SepJ is a novel composite protein needed for filament integrity, proper heterocyst development, and diazotrophic growth.


Assuntos
Anabaena/crescimento & desenvolvimento , Anabaena/genética , Proteínas de Bactérias/genética , Anabaena/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/metabolismo , Proteínas de Fluorescência Verde/genética , Microscopia Eletrônica de Transmissão , Fases de Leitura Aberta , Fenótipo
18.
Mol Microbiol ; 57(6): 1582-92, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16135226

RESUMO

Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts. The products of Anabaena open reading frames (ORFs) all1046, all1047, all1284, alr1834 and all2912 were identified as putative elements of a neutral amino acid permease. Anabaena mutants of these ORFs were strongly affected (1-12% of the wild-type activity) in the transport of Pro, Phe, Leu and Gly and also impaired (17-30% of the wild-type activity) in the transport of Ala and Ser. These results identified those ORFs as the nat genes encoding the N-I neutral amino acid permease. According to amino acid sequence homologies, natA (all1046) and natE (all2912) encode ATPases, natC (all1047) and natD (all1284) encode transmembrane proteins, and natB (alr1834) encodes a periplasmic substrate-binding protein of an ABC-type uptake transporter. The natA, natC, natD and natE mutants showed defects in Gln and His uptake that were not observed in the natB mutant suggesting that NatB is not a binding protein for Gln or His. The nat mutants released hydrophobic amino acids to the medium, and amino acid release took place at higher levels in cultures incubated in the absence of combined N than in the presence of nitrate. Alanine was the amino acid released at highest levels, and its release was impaired in a mutant unable to develop heterocysts. The nat mutants were also impaired in diazotrophic growth, with natA, natC, natD and natE mutants showing more severe defects than the natB mutant. Expression of natA and natC, which constitute an operon, natCA, as well as of natB was studied and found to take place in vegetative cells but not in the heterocysts. These results indicate that the N-I permease is necessary for normal growth of Anabaena sp. strain PCC 7120 on N2, and that this permease has a role in the diazotrophic filament specifically in the vegetative cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Anabaena/crescimento & desenvolvimento , Anabaena/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/genética , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Neutros , Aminoácidos Neutros/metabolismo , Anabaena/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA