Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Eur Spine J ; 32(6): 2048-2058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071156

RESUMO

PURPOSE: This study aims to analyze the effect of pro-inflammatory cytokine-stimulated human annulus fibrosus cells (hAFCs) on the sensitization of dorsal root ganglion (DRG) cells. We further hypothesized that celecoxib (cxb) could inhibit hAFCs-induced DRG sensitization. METHODS: hAFCs from spinal trauma patients were stimulated with TNF-α or IL-1ß. Cxb was added on day 2. On day 4, the expression of pro-inflammatory and neurotrophic genes was evaluated using RT-qPCR. Levels of prostaglandin E2 (PGE-2), IL-8, and IL-6 were measured in the conditioned medium (CM) using ELISA. hAFCs CM was then applied to stimulate the DRG cell line (ND7/23) for 6 days. Then, calcium imaging (Fluo4) was performed to evaluate DRG cell sensitization. Both spontaneous and bradykinin-stimulated (0.5 µM) calcium responses were analyzed. The effects on primary bovine DRG cell culture were performed in parallel to the DRG cell line model. RESULTS: IL-1ß stimulation significantly enhanced the release of PGE-2 in hAFCs CM, while this increase was completely suppressed by 10 µM cxb. hAFCs revealed elevated IL-6 and IL-8 release following TNF-α and IL-1ß treatment, though cxb did not alter this. The effect of hAFCs CM on DRG cell sensitization was influenced by adding cxb to hAFCs; both the DRG cell line and primary bovine DRG nociceptors showed a lower sensitivity to bradykinin stimulation. CONCLUSION: Cxb can inhibit PGE-2 production in hAFCs in an IL-1ß-induced pro-inflammatory in vitro environment. The cxb applied to the hAFCs also reduces the sensitization of DRG nociceptors that are stimulated by the hAFCs CM.


Assuntos
Anel Fibroso , Humanos , Animais , Bovinos , Interleucina-1beta/farmacologia , Celecoxib/farmacologia , Nociceptores , Fator de Necrose Tumoral alfa , Interleucina-6 , Bradicinina/farmacologia , Cálcio/farmacologia , Interleucina-8/farmacologia , Células Cultivadas , Gânglios Espinais
2.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803999

RESUMO

The purpose of the present pilot study was to evaluate the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) as a carrier for human mesenchymal stem cells (hMSCs) for intervertebral disc (IVD) regeneration using a disc organ culture model. HA was mixed with batroxobin (BTX) and PRP to form a hydrogel encapsulating 1 × 106 or 2 × 106 hMSCs. Bovine IVDs were nucleotomized and filled with hMSCs suspended in ~200 µL of the PRP/HA/BTX hydrogel. IVDs collected at day 0 and nucleotomized IVDs with no hMSCs and/or hydrogel alone were used as controls. hMSCs encapsulated in the hydrogel were also cultured in well plates to evaluate the effect of the IVD environment on hMSCs. After 1 week, tissue structure, scaffold integration, hMSC viability and gene expression of matrix and nucleus pulposus (NP) cell markers were assessed. Histological analysis showed a better preservation of the viability of the IVD tissue adjacent to the gel in the presence of hMSCs (~70%) compared to the hydrogel without hMSCs. Furthermore, disc morphology was maintained, and the hydrogel showed signs of integration with the surrounding tissues. At the gene expression level, the hydrogel loaded with hMSCs preserved the normal metabolism of the tissue. The IVD environment promoted hMSC differentiation towards a NP cell phenotype by increasing cytokeratin-19 (KRT19) gene expression. This study demonstrated that the hydrogel composed of HA/PRP/BTX represents a valid carrier for hMSCs being able to maintain a good cell viability while stimulating cell activity and NP marker expression.


Assuntos
Ácido Hialurônico/farmacologia , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/transplante , Queratina-19/genética , Transplante de Células-Tronco Mesenquimais , Animais , Batroxobina/farmacologia , Bovinos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Células-Tronco Mesenquimais/citologia , Núcleo Pulposo/crescimento & desenvolvimento , Núcleo Pulposo/transplante , Técnicas de Cultura de Órgãos , Plasma Rico em Plaquetas/química
3.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575886

RESUMO

Chronic discogenic back pain is associated with increased inflammatory cytokine levels that can influence the proximal peripheral nervous system, namely the dorsal root ganglion (DRG). However, transition to chronic pain is widely thought to involve glial activation in the spinal cord. In this study, an in vitro model was used to evaluate the communication between DRG and spinal cord glia. Primary neonatal rat DRG cells were treated with/without inflammatory cytokines (TNF-α, IL-1ß, and IL-6). The conditioned media were collected at two time points (12 and 24 h) and applied to spinal cord mixed glial culture (MGC) for 24 h. Adult bovine DRG and spinal cord cell cultures were also tested, as an alternative large animal model, and results were compared with the neonatal rat findings. Compared with untreated DRG-conditioned medium, the second cytokine-treated DRG-conditioned medium (following medium change, thus containing solely DRG-derived molecules) elevated CD11b expression and calcium signal in neonatal rat microglia and enhanced Iba1 expression in adult bovine microglia. Cytokine treatment induced a DRG-mediated microgliosis. The described in vitro model allows the use of cells from large species and may represent an alternative to animal pain models (3R principles).


Assuntos
Comunicação Celular , Gânglios Espinais/fisiologia , Neuroglia/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica , Animais , Animais Recém-Nascidos , Biomarcadores , Cálcio/metabolismo , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Imunofluorescência , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Ratos
4.
Connect Tissue Res ; 61(3-4): 304-321, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31556329

RESUMO

Low back pain is the leading cause of disability worldwide and in many patients the source of pain can be attributed to pathological changes within the intervertebral disc (IVD). As present treatment options fail to address the underlying biological problem, novel therapies are currently subject to intense research. The physiologic IVD microenvironment features a highly complex interaction of biochemical and mechanical factors influencing cell metabolism and extracellular matrix turnover and is therefore difficult to simulate for research purposes on IVD pathology. The first whole organ culture models were not able to sufficiently replicate human in vivo conditions as mechanical loading, the predominant way of IVD nutrient supply and waste exchange, remained disregarded. To mimic the unique IVD niche more realistically, whole organ culture bioreactors have been developed, allowing for dynamic loading of IVDs and nutrient exchange. Recent advancements on bioreactor systems have facilitated whole organ culture of various IVDs for extended periods. IVD organ culture bioreactors have the potential to bridge the gap between in vitro and in vivo systems and thus may give valuable insights on IVD pathology and/or potential novel treatment approaches if the respective model is adjusted according to a well-defined research question. In this review, we outline the potential of currently utilized IVD bioreactor systems and present suggestions for further developments to more reliably investigate IVD biology and novel treatment approaches.


Assuntos
Reatores Biológicos , Degeneração do Disco Intervertebral , Disco Intervertebral , Modelos Biológicos , Regeneração , Técnicas de Cultura de Tecidos , Animais , Humanos , Disco Intervertebral/patologia , Disco Intervertebral/fisiologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia
5.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614494

RESUMO

We investigated the effects of a fibrin-hyaluronic acid hydrogel (FBG-HA) and fibroblast growth factor 18 (FGF-18) for nucleus pulposus (NP) regeneration. Healthy bovine (n = 4) and human degenerated NP cells (n = 4) were cultured for 14 days in FBG-HA hydrogel with FGF-18 (∆51-mutant or wild-type) in the culture medium. Gene expression, DNA content, and glycosaminoglycan (GAG) synthesis were evaluated on day 7 and 14. Additionally, histology was performed. Human NP cells cultured in FBG-HA hydrogel showed an increase in collagen type II (COL2) and carbonic anhydrase XII (CA12) gene expression after 14 or 7 days of culture, respectively. GAG release into the conditioned medium increased over 14 days. Healthy bovine NP cells showed increased gene expression of ACAN from day 7 to day 14. Wild type FGF-18 up-regulated CA12 gene expression of human NP cells. Histology revealed an increase of proteoglycan deposition upon FGF-18 stimulation in bovine but not in human NP cells. The FBG-HA hydrogel had a positive modulatory effect on human degenerated NP cells. Under the tested conditions, no significant effect of FGF-18 was observed on cell proliferation or GAG synthesis in human NP cells.


Assuntos
Técnicas de Cultura de Células/métodos , Fatores de Crescimento de Fibroblastos/farmacologia , Ácido Hialurônico/química , Núcleo Pulposo/citologia , Animais , Biomimética , Anidrases Carbônicas/genética , Bovinos , Células Cultivadas , Colágeno Tipo II/metabolismo , Fatores de Crescimento de Fibroblastos/química , Glicosaminoglicanos/metabolismo , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/química , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Fenótipo , Regeneração
6.
Biomacromolecules ; 18(8): 2360-2370, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28679056

RESUMO

The intervertebral discs (IVDs) provide unique flexibility to the spine and exceptional shock absorbing properties under impact. The inner core of the IVD, the nucleus pulposus (NP) is responsible for this adaptive behavior. Herein, we evaluate an injectable, self-healing dynamic hydrogel (DH) based on gold(I)-thiolate/disulfide (Au-S/SS) exchange as NP replacement in a spine motion segment model. For the first time, we report the application of dynamic covalent hydrogels inside biological tissues. The dynamic exchange between Au-S species and disulfide bonds (SS) resulted in self-healing ability and frequency-dependent stiffness of the hydrogel, which was also confirmed in spine motion segments. Injection of preformed DH into nucleotomized IVDs restored the full biomechanical properties of intact IVDs, including the stiffening effect observed at increasing frequencies, which cannot be achieved with conventional covalent hydrogel. DH has the potential to counteract IVD degeneration associated with high frequency vibrations. Self-healing properties, confirmed by rheology studies and macroscopic observation after injection, were required to inject preformed DH, which recovered its mechanical integrity and microstructure to act as an artificial NP. On the other hand, covalent hydrogel did not show any restoration of NP properties as this conventional material suffered irreversible damages after injection, which demonstrates that the dynamic properties are crucial for this application. The persistence of DH in the IVD space following cyclic high-frequency loading, confirmed by tomography after mechanical testing, suggests that this material would have long life span as an injectable NP replacement material.


Assuntos
Dissulfetos/química , Ouro/química , Hidrogéis/química , Disco Intervertebral/química , Estresse Mecânico , Humanos
7.
Eur Spine J ; 25(9): 2898-908, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27037921

RESUMO

PURPOSE: The aim of this study was to compare two approaches for the delivery of biomaterials to partially nucleotomised intervertebral discs in whole organ culture under loading. Such models can help to bridge the gap between in vitro and in vivo studies by assessing (1) suitability of biomaterial delivery and defect closure methods, (2) effect of mechanical loading and (3) tissue response. METHODS: Mechanical performance of bovine discs filled with a hyaluronan-based thermoreversible hydrogel delivered through the annulus fibrosus (AF) or the bony endplate (EP) was evaluated under cyclic axial loading in a bioreactor. The loading protocol was optimised to achieve physiological disc height changes in nucleotomised discs. A loading regime of 0.06 ± 0.02 MPa, 0.1 Hz, 6 h daily was applied on the nucleotomised discs. Disc height and stiffness were tracked for 5 days, followed by histological analyses. RESULTS: Creation of a defect is less demanding for AF approach, while sealing is superior with the EP approach. Dynamic compressive stiffness is reduced following nucleotomy, with no significant difference between the two approaches. Disc height loss was higher, disc height recovery was lower and region around the defect with reduced cell viability was smaller for AF-approached than EP-approached discs. CONCLUSIONS: Two alternative methods for biomaterial testing in whole organ culture under loading were developed. Such models bring insights on the ability of the biomaterial to restore the mechanical behaviour of the discs. From a clinical perspective, the cavity models can simulate treatment of nucleotomy after disc herniation in young patients, whereby the remaining nucleus pulposus is still functional and therefore at high risk of re-herniation, though the defect may differ from the clinical situation.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Bovinos , Sobrevivência Celular , Modelos Animais de Doenças , Discotomia/métodos , Ácido Hialurônico/uso terapêutico , Hidrogéis/uso terapêutico , Disco Intervertebral/patologia , Disco Intervertebral/fisiopatologia , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/patologia , Teste de Materiais/métodos , Técnicas de Cultura de Órgãos/métodos , Suporte de Carga/fisiologia
8.
JOR Spine ; 6(3): e1267, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780827

RESUMO

Introduction: Mechanical overloading can trigger a degenerative-like cascade in an organ culture of intervertebral disc (IVD). Whether the overloaded IVD can influence the activation of nociceptors (i.e., the damage sensing neurons) remains unknown. The study aims to investigate the influence of overloaded IVD conditioned medium (CM) on the activation of nociceptors. Methods: In the static loading regime, force-controlled loading of 0.2 MPa for 20 h/day representing "long-term sitting and standing" was compared with a displacement-controlled loading maintaining original IVD height. In the dynamic loading regime, high-frequency-intensity loading representing degenerative "wear and tear" was compared with a lower-frequency-intensity loading. CM of differently loaded IVDs were collected to stimulate the primary bovine dorsal root ganglion (DRG) cultures. Calcium imaging (Fluo-4) and calcitonin gene-related peptide (CGRP) immunofluorescent labeling were jointly used to record the calcium flickering in CGRP(+) nociceptors. Results: Force-controlled loading led to a higher IVD cell death compared to displacement-controlled loading. Both static and dynamic overloading (force-controlled and high-frequency-intensity loadings) elevated the frequency of calcium flickering in the subsurface space of CGRP(+) nociceptors compared to their mild loading counterparts. Conclusion: In the organ culture system, IVD overloading mediated an altered IVD-nociceptor communication suggesting a biological mechanism associated with discogenic pain.

9.
J Anat ; 221(6): 480-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22686699

RESUMO

The intervertebral disc (IVD) is a moderately moving joint that is located between the bony vertebrae and provides flexibility and load transmission throughout the spinal column. The disc is composed of different but interrelated tissues, including the central highly hydrated nucleus pulposus (NP), the surrounding elastic and fibrous annulus fibrosus (AF), and the cartilaginous endplate (CEP), which provides the connection to the vertebral bodies. Each of these tissues has a different function and consists of a specific matrix structure that is maintained by a cell population with distinct phenotype. Although the healthy IVD is able to balance the slow matrix turnover of synthesis and degradation, this balance is often disturbed, leading to degenerative disorders. Successful therapeutic management of IVD degeneration requires a profound understanding of the cellular and molecular characteristics of the functional IVD. Hence, the phenotype of IVD cells has been of significant interest from multiple perspectives, including development, growth, remodelling, degeneration and repair. One major challenge that complicates our understanding of the disc cells is that both the cellular phenotype and the extracellular matrix strongly depend on disc maturity and health and as a consequence are continuously evolving. This review delineates the diversity of the cell types found in the intervertebral disc, with emphasis on human, but with reference to other species. The cells of the NP appear rounded and express a proteoglycan-rich matrix, whereas the more elongated AF cells are embedded in a collagen fibre matrix and the CEPs represent a layer of cartilage. Even though all disc cells have often been referred to as 'intervertebral disc chondrocytes', distinct phenotypical differences in comparison with articular chondrocytes exist and have been reported recently. The availability of more specific markers has also improved our understanding of progenitor cell differentiation towards an IVD cell phenotype. Ultimately, new cell- and tissue-engineering approaches to regenerative therapies will only be successful if the specific characteristics of the individual tissues and their context in the function of the whole organ, are taken into consideration.


Assuntos
Condrócitos/citologia , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/anatomia & histologia , Disco Intervertebral/embriologia , Fenótipo , Células-Tronco/citologia , Animais , Matriz Extracelular/fisiologia , Humanos , Disco Intervertebral/citologia , Degeneração do Disco Intervertebral/fisiopatologia , Especificidade da Espécie
10.
Eur Spine J ; 21 Suppl 6: S839-49, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21874295

RESUMO

INTRODUCTION: Thermoreversible hydrogels have potential in spine research as they provide easy injectability and mild gelling mechanism (by physical cross-link). The purpose of this study was to assess the potential of thermoreversible hyaluronan-based hydrogels (HA-pNIPAM) (pNIPAM Mn = 10, 20, 35 × 10(3) g mol(-1)) as nucleus pulposus cells (NPC) carrier. MATERIALS AND METHODS: Cytocompatibility (WST-1 assay), viability (trypan blue), morphology (toluidine blue), sulphated glycosaminoglycan synthesis (DMMB assay) and gene expression profile (real-time PCR) of bovine NPC cultured in HA-pNIPAM were followed for 1 week and compared to alginate gel bead cultures. The injectability and cell survival in a whole disc organ culture model were assessed up to day 7. RESULTS: All HA, HA-pNIPAM and their degradation products were cytocompatible to NPC. HA-pNIPAM hydrogels with no volume change upon gelling maintained NPC viability and characteristic rounded morphology. Glycosaminoglycan synthesis was similar in HA-pNIPAM and alginate gels. Following NPC expansion, both gels induced re-differentiation toward the NPC phenotype. Significant differences between the two gels were found for COLI, COLII, HAS1, HAS2 and ADAMTS4 but not for MMPs and TIMPs. Higher expression of hyaluronan synthases (HAS1, HAS2) and lower expression of COLI and COLII mRNA were noted in cells cultured in HA-pNIPAM (pNIPAM = 20 × 10(3)g mol(-1)). NPC suspension in HA-pNIPAM was injectable through a 22-G needle without loss of cell viability. Ex vivo, NPC viability was maintained in HA-pNIPAM for 1 week. CONCLUSION: A HA-pNIPAM composition suitable for nucleus pulposus repair that provides an injectable carrier for NPC, maintains their phenotype and promotes extracellular matrix generation was identified.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Ácido Hialurônico , Hidrogéis , Disco Intervertebral/citologia , Animais , Bovinos , Sobrevivência Celular , Células Cultivadas , Colágeno/metabolismo , Estudos de Viabilidade , Glicosaminoglicanos/metabolismo , Ácido Hialurônico/administração & dosagem , Hidrogéis/administração & dosagem , Injeções , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Modelos Animais
11.
Eur Spine J ; 21 Suppl 6: S800-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21811821

RESUMO

INTRODUCTION: Polymethylmethacrylate bone cements have proven performance in arthroplasty and represent a common bone filler, e.g. in vertebroplasty. However, acrylic cements are still subject to controversy concerning their exothermic reaction and osteo-integration potential. Therefore, we submitted a highly filled acrylic cement to a systematic investigation on the cell-material and tissue-implant response in vitro and in vivo. MATERIALS AND METHODS: Cured Vertecem V+ Cements were characterized by electron microscopy. Human bone marrow-derived mesenchymal stem cell morphology, growth and differentiation on the cured cement were followed for 28 days in vitro. The uncured cement was injected in an ovine cancellous bone defect and analysed 4 and 26 weeks post-implantation. RESULTS: The rough surface of the cement allowed for good stem cells adhesion in vitro. Up-regulation of alkaline phosphatase was detected after 8 days of incubation. No adverse local effects were observed macroscopically and microscopically following 4 and 26 weeks of implantation of the cement into drill-hole defects in ovine distal femoral epiphysis. Direct bone apposition onto the implant surface was observed resulting in extended signs of osteo-integration over time (35.2 ± 24.2% and 88.8 ± 8.8% at week 4 and 26, respectively). CONCLUSION: Contrary to the established opinion concerning bony tissue response to implanted acrylic bone cements, we observed an early cell-implant in vitro interaction leading to cell growth and differentiation and significant signs of osteo-integration for this acrylic cement using standardized methods. Few outlined limitations, such as the use of low cement volumes, have to be considered in the interpretation of the study results.


Assuntos
Células da Medula Óssea/citologia , Fêmur/citologia , Polimetil Metacrilato , Animais , Células da Medula Óssea/ultraestrutura , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fêmur/ultraestrutura , Humanos , Técnicas In Vitro , Teste de Materiais , Microscopia Eletrônica de Varredura , Ovinos
12.
Carbohydr Polym ; 277: 118828, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893245

RESUMO

Hyaluronic acid (HA) is a key component of the intervertebral disc (IVD) that is widely investigated as an IVD biomaterial. One persisting challenge is introducing materials capable of supporting cell encapsulation and function, yet with sufficient mechanical stability. In this study, a hybrid interpenetrating polymer network (IPN) was produced as a non-covalent hydrogel, based on a covalently cross-linked HA (HA-BDDE) and HA-poly(N-isopropylacrylamide) (HA-pNIPAM). The hybrid IPN was investigated for its physicochemical properties, with histology and gene expression analysis to determine matrix deposition in vitro and in an ex vivo model. The IPN hydrogel displayed cohesiveness for at least one week and rheological properties resembling native nucleus pulposus (NP) tissue. When implanted in an ex vivo IVD organ culture model, the IPN supported cell viability, phenotype expression of encapsulated NP cells and IVD matrix production over four weeks under physiological loading. Overall, our results indicate the therapeutic potential of this HA-based IPN hydrogel for IVD regeneration.


Assuntos
Resinas Acrílicas/farmacologia , Ácido Hialurônico/química , Hidrogéis/química , Disco Intervertebral/efeitos dos fármacos , Núcleo Pulposo/efeitos dos fármacos , Resinas Acrílicas/química , Animais , Bovinos , Portadores de Fármacos/química , Disco Intervertebral/patologia , Núcleo Pulposo/patologia
13.
Acta Biomater ; 125: 322-332, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631396

RESUMO

Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. STATEMENT OF SIGNIFICANCE: Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.


Assuntos
Tinta , Alicerces Teciduais , Fosfatos de Cálcio , Impressão Tridimensional , Solventes , Água
14.
Stem Cell Res Ther ; 12(1): 11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413584

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) have been introduced as promising cell source for regenerative medicine. Besides their multilineage differentiation capacity, MSCs release a wide spectrum of bioactive factors. This secretome holds immunomodulatory and regenerative capacities. In intervertebral disc (IVD) cells, application of MSC secretome has been shown to decrease the apoptosis rate, induce proliferation, and promote production of extracellular matrix (ECM). For clinical translation of secretome-based treatment, characterization of the secretome composition is needed to better understand the induced biological processes and identify potentially effective secretomes. METHODS: This study aimed to investigate the proteome released by bone marrow-derived MSCs following exposure to a healthy, traumatic, or degenerative human IVD environment by mass spectroscopy and quantitative immunoassay analyses. Exposure of MSCs to the proinflammatory stimulus interleukin 1ß (IL-1ß) was used as control. RESULTS: Compared to MSC baseline secretome, there were 224 significantly up- or downregulated proteins following healthy, 179 following traumatic, 223 following degenerative IVD, and 160 proteins following IL-1ß stimulus. Stimulation of MSCs with IVD conditioned media induced a more complex MSC secretome, involving more biological processes, compared to stimulation with IL-1ß. The MSC response to stimulation with IVD conditioned medium was dependent on their pathological status. CONCLUSIONS: The MSC secretome seemed to match the primary need of the IVD: homeostasis maintenance in the case of healthy IVDs, versus immunomodulation, adjustment of ECM synthesis and degradation disbalance, and ECM (re) organization in the case of traumatic and degenerative IVDs. These findings highlight the importance of cell preconditioning in the development of tailored secretome therapies. The secretome of human bone marrow-derived mesenchymal stromal cells (MSCs) stimulated with intervertebral disc (IVD) conditioned medium was analyzed by proteomic profiling. Depending on the pathological state of the IVD, the MSC secretome protein composition indicated immunomodulatory or anabolic activity of the secretome. These findings may have implications for tailored secretome therapy for the IVD and other tissues.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Células Cultivadas , Humanos , Degeneração do Disco Intervertebral/terapia , Proteômica
15.
Biomacromolecules ; 11(5): 1261-72, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20369816

RESUMO

Thermoreversible hydrogels are promising matrices for tissue-engineered cartilage and spine constructs. They require specific properties during all the stages of a cell therapy (e.g., cell expansion, recovery, injection, delivery). Thermoreversible hyaluronan-poly(N-isopropylacrylamide) (HA-PNIPAM) hydrogels with well-defined molecular architecture and properties were synthesized through RAFT polymerization and "click" chemistry. The effect of PNIPAM grafting length and density on HA-PNIPAM properties was evaluated by methods relevant for a cell therapy. It was found that reversibility of the PNIPAM gelling process was improved in the presence of HA. Increasing M(n) of PNIPAM decreased the viscosity at 20 degrees C and led to high G' at T > 30 degrees C; however, higher grafting density led to lower mechanical properties. Water uptake of the hydrogels was mainly dependent on PNIPAM M(n). All of the hydrogels and their degradation products were cytocompatible to hTERT-BJ1 fibroblasts. A composition with properties ideal for cell encapsulation was identified and characterized by a low viscosity at 20 degrees C, rapid gelling at 37 degrees C, absence of volume change upon gelling, and G' of 140 Pa at 37 degrees C.


Assuntos
Biopolímeros/química , Tratamento Farmacológico , Ácido Hialurônico/química , Hidrogéis , Sequência de Carboidratos , Dados de Sequência Molecular
17.
Neurospine ; 17(1): 42-59, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32252154

RESUMO

OBJECTIVE: Ischemia-related risk factors are consistently correlated with discogenic pain, but it remains unclear how the ischemia-associated hypoxia and acidosis influence the peripheral sensory nervous system, namely the dorsal root ganglion (DRG), either directly or indirectly via intervertebral disc (IVD) mediation. METHODS: Bovine tail IVD organ cultures were preconditioned in different hypoxic and/or acidic conditions for 3 days to collect the conditioned medium (CM). The DRG-derived ND7/23 cells were either treated by the IVD CM or directly stimulated by hypoxic and/or acidic conditions. Neuronal sensitization was evaluated using calcium imaging (Fluo-4) after 3 days. RESULTS: We found that direct exposure of DRG cell line to hypoxia and acidosis increased both spontaneous and bradykinin-stimulated calcium response compared to normoxia-neutral pH cultures. Hypoxia and low pH in combination showed stronger effect than either parameter on its own. Indirect exposure of DRG to hypoxia-acidosis-stressed IVD CM also increased spontaneous and bradykinin-stimulated response, but to a lower extent than direct exposure. The impact of direct hypoxia and acidosis on DRG was validated in a primary sheep DRG cell culture, showing the same trend. CONCLUSION: Our data suggest that targeting hypoxia and acidosis stresses both in IVD and DRG could be a relevant objective in discogenic pain treatment.

18.
JOR Spine ; 3(2): e1090, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613165

RESUMO

It has been shown that painful intervertebral discs (IVDs) were associated with a deeper innervation. However, the effect of the disc's degenerative microenvironment on neuronal outgrowth remains largely unknown. The focus of this study was to determine the influence of hypoxia on dorsal root ganglion (DRG) neurite outgrowth. Toward this aim, the DRG-derived cell line ND7/23 was either directly subjected to 2% or 20% oxygen conditions or exposed to conditioned medium (CM) collected from IVDs cultured under 2% or 20% oxygen. Viability and outgrowth analysis were performed following 3 days of exposure. Results obtained with the cell line were further validated on cultures of rabbit spinal DRG explants and dissociated DRG neurons. Results showed that hypoxia significantly increased neurite outgrowth length in ND7/23 cells, which was also validated in DRG explant and primary cell culture, although hypoxia conditioned IVD did not significantly increase ND7/23 neurite outgrowth. While hypoxia dramatically decreased the outgrowth frequency in explant cultures, it significantly increased collateral sprouting of dissociated neurons. Importantly, the hypoxia-induced decrease of outgrowth frequency at the explant level was not due to inhibition of outgrowth branching but rather to neuronal necrosis. In summary, hypoxia in DRG promoted neurite sprouting, while neuronal necrosis may reduce the density of neuronal outgrowth at the tissue level. These findings may help to explain the deeper neo-innervation found in the painful disc tissue. HIGHLIGHTS: Hypoxia promoted elongation and branching of neurite outgrowth at single cell level, but reduced outgrowth density at tissue level, possibly due to hypoxia-induced neuronal necrosis; these findings may help to explain the deeper neo-innervation found in clinically painful tissues.

19.
Spine (Phila Pa 1976) ; 44(23): 1613-1622, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730570

RESUMO

STUDY DESIGN: Experimental study with human mesenchymal stem cells (MSCs) and intervertebral disc (IVD) tissue samples. OBJECTIVE: This study aimed to characterize the effect of MSC homing on the Tie2-positive IVD progenitor cell population, IVD cell survival, and proliferation. SUMMARY OF BACKGROUND DATA: Homing of human MSCs has been described as potential alternative to MSC injection, aiming to enhance the regenerative capacity of the IVD. IVD cells expressing Tie2 (also known as CD202b or Angiopoietin-1 receptor TEK tyrosine kinase) represent a progenitor cell population with discogenic differentiation potential. However, the fraction of Tie2-positive progenitor cells decreases with aging and degree of IVD degeneration, resulting in a potential loss of the IVD's regenerative capacity. METHODS: Human MSCs, isolated from vertebral bone marrow aspirates, were labeled and seeded onto the endplate of bovine IVDs and human IVD tissue. Following MSC migration for 5 days, IVD cells were isolated by tissue digestion. The fractions of Tie2-positive, dead, apoptotic, and proliferative IVD cells were evaluated by flow cytometry and compared to untreated IVDs. For human IVDs, 3 groups were investigated: nondegenerated (organ donors), IVDs of patients suffering from spinal trauma, and degenerative IVD tissue samples. RESULTS: MSC homing enhanced the fraction of Tie2-positive IVD cells in bovine and human IVD samples. Furthermore, a proliferative response and lower fraction of dead cells were observed after MSC homing in both bovine and human IVD tissues. CONCLUSION: Our findings indicate that MSC homing enhances the survival and regenerative capability of IVD cells, which may be mediated by intercellular communication. MSC homing could represent a potential treatment strategy to prevent the onset of the degenerative cascade in IVDs at risk such as IVDs adjacent to a fused segment or IVDs after herniation. LEVEL OF EVIDENCE: N/A.


Assuntos
Proliferação de Células/fisiologia , Disco Intervertebral/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Receptor TIE-2/biossíntese , Animais , Bovinos , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Técnicas de Cultura de Órgãos
20.
J Orthop Res ; 36(1): 10-21, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28718947

RESUMO

The purpose of this review is to provide a brief overview of bioreactor-based culture systems as alternatives to conventional two- and three-dimensional counterparts. The role, challenges, and future aspirations of bioreactors in the musculoskeletal field (e.g., cartilage, intervertebral disc, tendon, and bone) are discussed. Bioreactors, by recapitulating physiological processes, can be used effectively as part of the initial in vitro screening, reducing that way the number of animal required for preclinical assessment, complying with the 3R principles and, in most cases, allowing working with human tissues. The clinical significance of bioreactors is that, by providing more physiologically relevant conditions to customarily used two- and three-dimensional cultures, they hold the potential to provide a testing platform that is more predictable of a whole tissue response, thereby facilitating the screening of treatments before the initiation of clinical trials. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:10-21, 2018.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Tecidos , Alternativas aos Testes com Animais , Animais , Cartilagem/citologia , Cartilagem/fisiologia , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/fisiologia , Ligamentos/citologia , Ligamentos/fisiologia , Tendões/citologia , Tendões/fisiologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA