Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0283696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000792

RESUMO

Leishmania is a protozoan that causes leishmaniasis, a neglected tropical disease with clinical manifestations classified as cutaneous, mucocutaneous, and visceral leishmaniasis. In the infection context, the parasite can modulate macrophage gene expression affecting the microbicidal activity and immune response. The metabolism of L-arginine into polyamines putrescine, spermidine, and spermine reduces nitric oxide (NO) production, favoring Leishmania survival. Here, we investigate the effect of supplementation with L-arginine and polyamines in infection of murine BALB/c macrophages by L. amazonensis and in the transcriptional regulation of genes involved in arginine metabolism and proinflammatory response. We showed a reduction in the percentage of infected macrophages upon putrescine supplementation compared to L-arginine, spermidine, and spermine supplementation. Unexpectedly, deprivation of L-arginine increased nitric oxide synthase (Nos2) gene expression without changes in NO production. Putrescine supplementation increased transcript levels of polyamine metabolism-related genes Arg2, ornithine decarboxylase (Odc1), Spermidine synthase (SpdS), and Spermine synthase (SpmS), but reduced Arg1 in L. amazonensis infected macrophages, while spermidine and spermine promoted opposite effects. Putrescine increased Nos2 expression without leading to NO production, while L-arginine plus spermine led to NO production in uninfected macrophages, suggesting that polyamines can induce NO production. Besides, L-arginine supplementation reduced Il-1b during infection, and L-arginine or L-arginine plus putrescine increased Mcp1 at 24h of infection, suggesting that polyamines availability can interfere with cytokine/chemokine production. Our data showed that putrescine shifts L-arginine-metabolism related-genes on BALB/c macrophages and affects infection by L. amazonensis.


Assuntos
Leishmania , Leishmaniose , Animais , Camundongos , Putrescina/farmacologia , Putrescina/metabolismo , Espermidina/farmacologia , Espermidina/metabolismo , Espermina/metabolismo , Poliaminas/metabolismo , Leishmaniose/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Óxido Nítrico Sintase/metabolismo , Macrófagos/metabolismo , Arginina/farmacologia , Arginina/metabolismo , Suplementos Nutricionais
2.
PLoS One ; 10(3): e0121487, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781016

RESUMO

BACKGROUND AND OBJECTIVE: Freezing changes sperm integrity remarkably. Cryopreservation involves cooling, freezing, and thawing and all these contribute to structural damage in sperm, resulting in reduced fertility potential. Low-level laser irradiation (LLLI) could increase energy supply to the cell and cause reactive oxygen species reduction (ROS), contributing to the restoration of oxygen consumption and adenosine triphosphate synthesis (ATP) in the mitochondria. Our goal was to analyze the effects of low-level laser irradiation on sperm motility and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. STUDY DESIGN/MATERIALS AND METHODS: We analyzed 09 samples of bull semen (Bos taurus indicus), divided into three groups: a control group without laser irradiation, a 4J group subjected to a laser irradiation dose of 4 joules, and a 6J group subjected to dose of 6 joules. Samples were divided for the analysis of cell viability and acrosomal membrane integrity using flow cytometry; another portion was used for motion analysis. Irradiation was performed in petri dishes of 30 mm containing 3 ml of semen by an aluminum gallium indium phosphide laser diode with a wavelength of 660 nm, 30 mW power, and energy of 4 and 6 joules for 80 and 120 seconds respectively. Subsequently, the irradiated and control semen samples were subjected to cryopreservation and analyzed by flow cytometry (7AAD and FITC-PSA) using the ISAS--Integrated Semen Analysis System. RESULTS: Flow cytometry showed an increase in the percentage of live sperm cells and acrosome integrity in relation to control cells when subjected to irradiation of low-power laser in two different doses of 4 and 6 joules (p < 0.05). In the analysis of straightness, percentage of cell movement, and motility, a dose of 4 joules was more effective (p < 0.05). CONCLUSION: We conclude that LLLI may exert beneficial effects in the preservation of live sperm. A dose of 4 joules prior to cryopreservation was more effective than a dose of 6 joules in preserving sperm motility.


Assuntos
Acrossomo/metabolismo , Membrana Celular/metabolismo , Criopreservação , Lasers , Preservação do Sêmen , Motilidade dos Espermatozoides/efeitos da radiação , Animais , Bovinos , Sobrevivência Celular/efeitos da radiação , Citometria de Fluxo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA