Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109348

RESUMO

After the Seveso disaster occurred more than 40 years ago, there has been an increasing awareness of the potential impacts that similar accident events can occur in a wide range of process establishments, where the handling and production of hazardous substances pose a real threat to society and the environment. In these industrial sites denominated "Seveso sites," the urgent need for an effective strategy emerged markedly to handle hazardous activities and to ensure safe conditions. Since then, the main challenging research issues have focused on how to prevent such accident events and how to mitigate their consequences leading to the development of many risk assessment methodologies. In recent years, researchers and practitioners have tried to provide useful overviews of the existing risk assessment methodologies proposing several reviews. However, these reviews are not exhaustive because they are either dated or focus only on one specific topic (e.g., liquefied natural gas, domino effect, etc.). This work aims to overcome the limitations of the current reviews by providing an up-to-date and comprehensive overview of the risk assessment methodologies for handling hazardous substances within the European industry. In particular, we have focused on the current techniques for hazards and accident scenarios identification, as well as probability and consequence analyses for both onshore and offshore installations. Thus, we have identified the research streams that have characterized the activities of researchers and practitioners over the years, and we have then presented and discussed the different risk assessment methodologies available concerning the research stream that they belong to.

2.
J Mech Behav Biomed Mater ; 106: 103724, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250950

RESUMO

Despite the great potential of Mg and its alloys as material for biodegradable implants, their low resistance to the simultaneous action of corrosion and mechanical stresses in the human body have hampered their use. Stress Corrosion Cracking has been reported as one of the most critical failure modes to overcome to allow such materials to be clinically applied. Thus, in this paper we investigate the effect of Equal Channel Angular Pressing (ECAP) on the Stress Corrosion Cracking (SCC) susceptibility of the AZ31 Mg alloy. To do so, AZ31 alloy has been subjected to 1, 2 and 4 passes of ECAP, and the samples so obtained have then been tested by means Slow Strain Rate Tests (SSRTs) in Simulated Body Fluid (SBF) at 37 °C. Samples subjected to one pass of ECAP are shown to be less susceptible to SCC compared to the material in the as-received condition, while further ECAP processing (2 and 4 passes) are found to worsen the SCC susceptibility. To understand the different SCC susceptibilities shown by the differently ECAPed samples, microstructural analyses, potentiodynamic polarization curves, hydrogen evolution experiments and Scanning Electron Microscopy (SEM) analyses of the fracture surfaces were carried out. The improved corrosion resistance of the samples subjected to 1 pass of ECAP compared to the samples in the as received condition (due to a finer grain size) and to the samples subjected to 2 and 4 passes (due to a more favourable texture evolution) represents the reason of their reduced SCC susceptibility.


Assuntos
Líquidos Corporais , Magnésio , Ligas , Corrosão , Humanos
3.
Materials (Basel) ; 11(5)2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693565

RESUMO

Ti-6Al-4V has been extensively used in structural applications in various engineering fields, from naval to automotive and from aerospace to biomedical. Structural applications are characterized by geometrical discontinuities such as notches, which are widely known to harmfully affect their tensile strength. In recent years, many attempts have been done to define solid criteria with which to reliably predict the tensile strength of materials. Among these criteria, two local approaches are worth mentioning due to the accuracy of their predictions, i.e., the strain energy density (SED) approach and the theory of critical distance (TCD) method. In this manuscript, the robustness of these two methods in predicting the tensile behavior of notched Ti-6Al-4V specimens has been compared. To this aim, two very dissimilar notch geometries have been tested, i.e., semi-circular and blunt V-notch with a notch root radius equal to 1 mm, and the experimental results have been compared with those predicted by the two models. The experimental values have been estimated with low discrepancies by either the SED approach and the TCD method, but the former results in better predictions. The deviations for the SED are in fact lower than 1.3%, while the TCD provides predictions with errors almost up to 8.5%. Finally, the weaknesses and the strengths of the two models have been reported.

4.
Materials (Basel) ; 11(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308932

RESUMO

In recent years, the need of surgical procedures has continuously increased and, therefore, researchers and clinicians are broadly focusing on the development of new biocompatible materials. Among them, polyetheretherketone (PEEK) has gained wide interest in load-bearing applications due to its yielding behaviour and its superior corrosion resistance. To assure its reliability in these applications where notches and other stress concentrators weaken implants resistance, a design tool for assessing its tensile and fatigue behaviour in the presence of geometrical discontinuities is highly claimed. Herein, a new fatigue design method based on a local approach is proposed for PEEK implant, and the results are compared with those obtained using the two main biomaterial design approaches available in literature, i.e., the theory of critical distances (TCD) and the notch stress intensity factor (NSIF) approach. To this aim, previously published datasets of PEEK-notched specimens are used, and the proposed method is reported to provide more accurate results and to be robust for different notch geometries.

5.
Materials (Basel) ; 10(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236029

RESUMO

Polyetheretherketone (PEEK) has gained interest in many industrial applications due to its high strength-to-weight ratio, excellent heat tolerance and high corrosion resistance. Stress concentrators such as notches and geometrical discontinuities are present in many such components necessitating the reliable assessment of notch sensitivity of PEEK in monotonic tension. Here we evaluate the applicability of the strain energy density (SED) approach for the assessment of the fracture strength of experimentally tested notched geometries subject to corrosion. The fracture behavior of neat, circumferentially razor-grooved dog-bone specimens and circumferentially U-notched specimens with different notch radii can be predicted with a discrepancy lower than ±10%. Reliable predictions are shown on two previously published datasets employing both computed and published mechanical properties as inputs for the SED calculations. This report presents the first successful application of SED for PEEK as well as the successful prediction of tensile behavior in corrosive environments. This opens the road towards future applications of PEEK in fields its compliant use is of growing popularity.

6.
ACS Appl Mater Interfaces ; 9(45): 39105-39109, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29083141

RESUMO

Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2-3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA