RESUMO
Integrated optical biosensors are gaining increasing attention for their exploitation in lab-on-chip platforms. The standard detection method is based on the measurement of the shift of some optical quantity induced by the immobilization of target molecules at the surface of an integrated optical element upon biomolecular recognition. However, this requires the acquisition of said quantity over the whole hybridization process, which can take hours, during which any external perturbation (e.g., temperature and mechanical instability) can seriously affect the measurement and contribute to a sizeable percentage of invalid tests. Here, we present a different assay concept, named Opto-Magnetic biosensing, allowing us to optically measure off-line (i.e., post hybridization) tiny variations of the effective refractive index seen by microring resonators upon immobilization of magnetic nanoparticles labelling target molecules. Bound magnetic nanoparticles are driven in oscillation by an external AC magnetic field and the corresponding modulation of the microring transfer function, due to the effective refractive index dependence on the position of the particles above the ring, is recorded using a lock-in technique. For a model system of DNA biomolecular recognition we reached a lowest detected concentration on the order of 10 pm, and data analysis shows an expected effective refractive index variation limit of detection of 7.5×10-9 RIU, in a measurement time of just a few seconds.
Assuntos
Técnicas Biossensoriais , Dispositivos Ópticos , Técnicas Biossensoriais/métodos , Fenômenos Magnéticos , Refratometria , SilícioRESUMO
A photonic integrated circuit performing simultaneous mode and wavelength demultiplexing for few-mode-fiber transmission is demonstrated for the first time. The circuit is realized on an InP-based technological platform; it can handle up to eight mode- and wavelength-division-multiplexed (MDM/WDM) channels and allows all-optical multiple-input-multiple-output processing to unscramble mode mixing generated by fiber propagation. A single arrayed waveguide grating is used to demultiplex the WDM channels carried by all the propagating modes, optimizing circuit complexity, chip area, and operational stability. Combined with an integrated wideband mode multiplexer the circuit is successfully exploited for the transmission of 10 Gbit/s on-off-keying non-return-to-zero channels with a residual cross talk of about -15 dB.
RESUMO
Metalenses are emerging as an alternative to digital micromirror devices (DMDs), with the advantages of compactness and flexibility. The exploration of metalenses has ignited enthusiasm among optical engineers, positioning them as the forthcoming frontier in technology. In this paper, we advocate for the implementation of the phase-change material, Sb2Se3, capable of providing swift, reversible, non-volatile focusing and defocusing within the 1550 nm telecom spectrum. The lens, equipped with a robust ITO microheater, offers unparalleled functionality and constitutes a significant step toward dynamic metalenses that can be integrated with beamforming applications. After a meticulously conducted microfabrication process, we showcase a device capable of rapid tuning (0.1 MHz level) for metalens focusing and defocusing at C band communication, achieved by alternating the PCM state between the amorphous and crystalline states. The findings from the experiment show that the device has a high contrast ratio for switching of 28.7 dB.
RESUMO
Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/µm and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100× improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.