Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(21): 37664-37674, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258350

RESUMO

Shock wave visual detection was traditionally performed using streak cameras, limited to homogeneous shock wave emission, with the corresponding shock wave pressure measurements available at rather large distances or numerically estimated through equation of state for water. We demonstrate a multi-frame multi-exposure shock wave velocity measurement technique for all in-plane directions of propagation, based on custom-built illumination system allowing multiple illumination pulses within each frame at multi-MHz frame rates and at up to 200 MHz illumination pulse repetition frequency at sub-nanosecond pulse durations. The measurements are combined and verified using a fiber-optic probe hydrophone, providing independent shock wave pressure and time-of-flight measurements, creating a novel all-optical measurement setup. The measured pressures at distances around 100 µm from the plasma center exceed 500 MPa, while camera-based measurements at even shorter distances indicate pressures above 1 GPa.

2.
Opt Express ; 29(15): 22868-22882, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614565

RESUMO

The intermediate pulse duration regime between typical ultra-short and nanosecond pulses has been investigated using MHz-range bursts of 70 ps pulses emitted from a custom-made fiber laser source. The goal of this study was to observe and understand the processes involved during laser ablation on the timescales from picoseconds to nanoseconds, relevant due to pulses in bursts. We developed material processing approaches that enable similar behaviour as single 70 ps pulse ablation to ultra-short pulses in terms of quality and burst-mode behaviour like nanosecond pulses in terms of efficiency. The variability of the fiber laser operation modes was studied and compared to both ultra-short and nanosecond pulses from standard laser sources.

3.
Opt Express ; 28(6): 7875-7888, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225422

RESUMO

In this manuscript we present a true pulse-on-demand concept of a hybrid CPA laser system, consisting of a chirped-pulse fiber amplifier and an additional solid-state amplifier, capable of generating femtosecond pulses on demand without an external optical modulator/shutter. Pulse-on-demand operation is achieved by introducing idler pulses with a few nanoseconds duration and selectively switching between the femtosecond and idler pulses. The idler pulses are used to maintain a constant population inversion in the fiber amplifier as well as in the solid-state amplifier. Second harmonic generation (SHG) unit then effectively filters out the idler pulses due to their low peak power, leaving only a stable femtosecond pulse train. This concept is demonstrated on a CPA hybrid system that can generate pulses with up to 200 µJ at 515 nm with a pulse duration under 450 fs. As there is no optical modulator at the laser output, the presented concept also enables further power scaling.

4.
Appl Opt ; 54(15): 4629-34, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26192495

RESUMO

A low-power source, such as a gain-switched laser diode, usually requires several amplification stages to reach sufficient power levels. When operating in burst mode, a correct input burst shape must be determined in order to compensate for gain saturation of all amplifier stages. In this paper we report on closed-form equations that enable saturation compensation in multiamplifier setups, which eliminates the need for an adaptive feedback loop. The theoretical model is then evaluated in an experimental setup.

5.
Opt Express ; 22(17): 20588-94, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321263

RESUMO

A simple solution for increasing the slope efficiency of a gain-switched fiber laser based on Yb-doped active fiber is presented. By adding a fiber amplifier stage, which recovers the unabsorbed pump light from the gain-switched oscillator, a significant increase in slope efficiency is achieved. The pulses at 1030-nm wavelength have an FWHM of 28 ns and a peak power of 2.3 kW.

6.
Ultrason Sonochem ; 92: 106243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459905

RESUMO

The nucleation and growth of cavitation bubbles few micrometers in size in water generated by a 60 ps 515 nm fiber laser is observed and visualized near nucleation threshold. The study is performed by monitoring the plasma size, the cavitation bubble size and the emitted shock waves. The latter two aspects are supported by the Gilmore model using a Noble-Abel-stiffened-gas (NASG) equations of state. For the first time, two types of cavitation events are identified and visualized that exhibit a difference of more than two orders of magnitude in the excitation energy converted to mechanical effects with minimal change in excitation laser pulse energy. The result is localized cavitation and reduced mechanical stress on water-based media with potentially positive implications for laser treatments of biological tissue.


Assuntos
Lasers , Água , Fenômenos Físicos
7.
Photoacoustics ; 30: 100465, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36874590

RESUMO

We present measurements of laser-induced shockwave pressure rise time in liquids on a sub-nanosecond scale, using custom-designed single-mode fiber optic hydrophone. The measurements are aimed at the study of the shockwave generation process, helping to improve the effectiveness of various applications and decrease possible accidental damage from shockwaves. The developed method allows measurement of the fast shockwave rise time as close as 10 µm from an 8 µm sized laser-induced plasma shockwave source, significantly improving the spatial and temporal resolution of the pressure measurement over other types of hydrophones. The spatial and temporal limitations of the presented hydrophone measurements are investigated theoretically, with actual experimental results agreeing well with the predictions. To demonstrate the capabilities of the fast sensor, we were able to show that the shockwave rise time is linked to liquid viscosity exhibiting logarithmic dependency in the low viscosity regime (from 0.4 cSt to 50 cSt). Additionally, the shockwave rise time dependency on propagation distance close to the source in water was investigated, with shock wave rise times measured down to only 150 ps. It was found that at short propagation distances in water halving the shock wave peak pressure results in the rise time increase by approximately factor of 1.6. These results extend the understanding of shockwave behavior in low viscosity liquids.

8.
Ultrason Sonochem ; 99: 106537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531836

RESUMO

Principles of laser-induced nanobubble formation in water are studied and presented. Nanobubbles were generated by laser light at intensities below threshold for laser-induced breakdown and subsequently expanded by a rarefaction wave to facilitate their observation and analysis. Different methods were used to study nanobubble formation and characteristics. Firstly, probability of nanobubble formation as a function of water sample purity was examined. Secondly, relation between laser fluence at different wavelengths and the number of generated nanobubbles was investigated. Thirdly, measurements of nanobubble lifetime were conducted indicating a contradiction to the Epstein-Plesset equation-based prediction of free bubble dissociation. Accumulated evidence suggests that the presence of physical impurities is a prerequisite for nanobubble formation. Consequently, a lack of impurities results in the absence of nanobubbles in contrast to assumptions by existing studies. The findings presented in this paper provide new insights into the fundamental properties of laser-induced nanobubbles in water.

9.
Micromachines (Basel) ; 14(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37421076

RESUMO

Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser powers, with scanner movement fundamentally limited by laws of inertia. In this work, we apply a nanosecond UV laser working in an intrinsic pulse-on-demand mode, ensuring maximal utilization of the fastest commercially available galvanometric scanners at scanning speeds from 0 to 20 m/s. The effects of high-frequency pulse-on-demand operation were analyzed in terms of processing speeds, ablation efficiency, resulting surface quality, repeatability, and precision of the approach. Additionally, laser pulse duration was varied in single-digit nanosecond pulse durations and applied to high throughput microstructuring. We studied the effects of scanning speed on pulse-on-demand operation, single- and multipass laser percussion drilling performance, surface structuring of sensitive materials, and ablation efficiency for pulse durations in the range of 1-4 ns. We confirmed the pulse-on-demand operation suitability for microstructuring for a range of frequencies from below 1 kHz to 1.0 MHz with 5 ns timing precision and identified the scanners as the limiting factor even at full utilization. The ablation efficiency was improved with longer pulse durations, but structure quality degraded.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34559647

RESUMO

In a growing number of applications, fast and localized pressure measurement in aqueous media is desired. To perform such measurements, a custom-made single-mode fiber-optic probe hydrophone (FOPH) was designed and used to measure the pressure pulse generated by laser-induced breakdown (LIB) in water. The sensor enabled sub-nanosecond pressure rise time measurement. Both the rise time and the duration of the shockwave were found to be shorter in the direction perpendicular to the breakdown generating laser beam, compared to the shockwave observed in the parallel direction. Simultaneous high-frame-rate imaging was used to qualitatively validate the novel hydrophone data and to observe the shockwave evolution. The measurements were performed also on pressure pulses emitted during the generation of miniature ( [Formula: see text] diameter) laser-induced bubbles at very small distances (down to [Formula: see text]), further demonstrating the capabilities of the small-size sensor and the ability to measure locally. The results improve understanding of LIB shockwave characteristics dependence on laser pulse energy and duration.


Assuntos
Tecnologia de Fibra Óptica , Lasers , Luz , Água
11.
Biomed Opt Express ; 13(2): 1061-1069, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284176

RESUMO

Precise excitation of cavitation is a promising mechanism for microsurgery procedures and targeted drug delivery enhancement. The underlying phenomenon of interest, jetting behaviour of oscillating cavitation bubbles, occurs due to near-surface interactions between the boundary, liquid, and bubble. Within this study we measured boundary effects on the cavitation bubble dynamics and morphology, with an emphasis on observation and measurement of jetting behaviour near tissue-phantom biointerfaces. An important mechanism of boundary poration has been observed using time-resolved optical microscopy and explained for different tissue-phantom surface densities and Young's modulus. Below a critical distance to the boundary, around γ = 1.0, the resulting jets penetrated the tissue-phantom, resulting in highly localized few micrometer diameter jets.

12.
Biomed Opt Express ; 12(9): 5881-5893, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34692222

RESUMO

Tissue diseases and related disorders need to be first recognized using diagnostic methods and then later treated by therapeutic methods-a joint procedure called theranostics. One of the main challenges in the field of retinal therapies remains in the success of the treatment, typically improving the local metabolism, by sparing the surrounding tissue and with the immediate information of the laser effect. In our study, we present a concept for real-time controlled tissue theranostics on a proof-of-concept study capable of using a single tunable ps laser source (in terms of irradiance, fluence, and repetition rate), done on ex-vivo human retinal pigment epithelium. We have found autofluorescence intensity and lifetime imaging diagnostics very promising for the recognition and quantification of laser effects ranging from selective non-destructive molecular tissue modification to complete tissue ablation. The main novelty of our work presents the developed algorithm for optimized theranostics based on the model function used to quantify laser-induced tissue changes through the diagnostics descriptors, fluorescence lifetime and fluorescence intensity parameters. This approach, together with the operation of the single adaptable laser source, can serve as a new theranostics method in personalized medicine in the future not only limited to treat retinal diseases.

13.
Opt Express ; 18(20): 21410-8, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20941038

RESUMO

For quality control in high volume manufacturing of thin layers and for tracking of physical and chemical processes, ellipsometry is a common measurement technology. For such kinds of applications we present a novel approach of fast ellipsometric measurements. Instead of a conventional setup that uses a standard photo-elastic modulator, we use a 92 kHz Single Crystal Photo-Elastic Modulator (SCPEM), which is a LiTaO3 crystal with a size of 28 × 9 × 4 mm. This small, simple, and cost-effective solution also offers the advantage of direct control of the retardation via the current amplitude, which is important for repeatability of the measurements. Instead of a Lock-In Amplifier, an automated digital processing based on a fast analog to digital converter controlled by a highly flexible Field Programmable Gate Array is used. This and the extremely compact and efficient polarization modulation allow fast ellipsometric testing where the upper limit of measurement rates is mainly limited by the desired accuracy and repeatability of the measurements. The standard deviation that is related to the repeatability +/-0.002° for dielectric layers can be easily reached.


Assuntos
Óptica e Fotônica , Automação , Calibragem , Elasticidade , Desenho de Equipamento , Lasers , Luz , Modelos Estatísticos , Oscilometria/métodos , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA