Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 71(8): e31030, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733122

RESUMO

Fanconi anemia (FA) is a disease caused by defective deoxyribonucleic acid (DNA) repair that manifests as bone marrow failure, cancer predisposition, and developmental defects. We previously reported that monotherapy with either metformin (MET) or oxymetholone (OXM) improved peripheral blood (PB) counts and the number and functionality of bone marrow hematopoietic stem progenitor cells (HSPCs) number in Fancd2-/- mice. To evaluate whether the combination treatment of these drugs has a synergistic effect to prevent bone marrow failure in FA, we treated cohorts of Fancd2-/- mice and wildtype controls with either MET alone, OXM alone, MET+OXM, or placebo diet from age 3 weeks to 18 months. The OXM treated animals showed modest improvements in blood parameters including platelet count (p = .01) and hemoglobin levels (p < .05). In addition, the percentage of quiescent hematopoietic stem cell (HSC) (LSK [Lin-Sca+c-Kit+]) was significantly increased (p = .001) by long-term treatment with MET alone. The combination of metformin and oxymetholone did not result in a significant synergistic effect in any hematopoietic parameter. Gene expression analysis of liver tissue from these animals showed that some of the expression changes caused by Fancd2 deletion were partially normalized by metformin treatment. Importantly, no adverse effects of the individual or combination therapies were observed, despite the long-term administration. We conclude that androgen therapy is not a contraindication to concurrent metformin administration in clinical trials. HIGHLIGHTS: Long-term coadministration of metformin in combination with oxymetholone is well tolerated by Fancd2-/- mice. Hematopoietic stem cell quiescence in mutant mice was enhanced by treatment with metformin alone. Metformin treatment caused a partial normalization of gene expression in the livers of mutant mice.


Assuntos
Modelos Animais de Doenças , Quimioterapia Combinada , Anemia de Fanconi , Metformina , Oximetolona , Animais , Metformina/farmacologia , Metformina/administração & dosagem , Camundongos , Anemia de Fanconi/tratamento farmacológico , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Camundongos Knockout , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo
2.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37649908

RESUMO

Fanconi Anemia (FA) is a disease caused by defective DNA repair which manifests as bone marrow failure, cancer predisposition, and developmental defects. Mice containing inactivating mutations in one or more genes in the FA pathway partially mimic the human disease. We previously reported that monotherapy with either metformin (MET) or oxymetholone (OXM) improved peripheral blood (PB) counts and the number and functionality of bone marrow (BM) hematopoietic stem progenitor cells (HSPCs) number in Fancd2-/- mice. To evaluate whether the combination treatment of these drugs has a synergistic effect to prevent bone marrow failure in FA, we treated cohorts of Fancd2-/- mice and wild-type controls with either MET alone, OXM alone, MET+OXM or placebo diet. Both male and female mice were treated from age 3 weeks to 18 months. The OXM treated animals showed modest improvements in blood parameters including platelet count (p=0.01) and hemoglobin levels (p<0.05). In addition, the percentage of quiescent HSC (LSK) was significantly increased (p=0.001) by long-term treatment with MET alone. However, the absolute number of progenitors, measured by LSK frequency or CFU-S, was not significantly altered by MET therapy. The combination of metformin and oxymetholone did not result in a significant synergistic effect on any parameter. Male animals on MET+OXM or MET alone were significantly leaner than controls at 18 months, regardless of genotype. Gene expression analysis of liver tissue from these animals showed that some of the expression changes caused by Fancd2 deletion were partially normalized by metformin treatment. Importantly, no adverse effects of the individual or combination therapies were observed, despite the long-term administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA