Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Biochem Zool ; 76(3): 296-301, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12905115

RESUMO

Invasive species are commonly thought to have broad tolerances that enable them to colonize new habitats, but this assumption has rarely been tested. In particular, the relative importance of acclimation (plasticity) and adaptation for invasion success are poorly understood. This study examined effects of short-term and developmental acclimation on adult salinity tolerance in the copepod Eurytemora affinis. This microcrustacean occurs in estuarine and salt marsh habitats but has invaded freshwater habitats within the past century. Effects of short-term acclimation were determined by comparing adult survival in response to acute versus gradual salinity change to low salinity (fresh water). Effects of developmental acclimation on adult tolerance were determined using a split-brood 4 x 2 factorial experimental design for one brackish-water population from Edgartown Great Pond, Massachusetts. Twenty full-sib clutches were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On reaching adulthood, clutches from three of the salinity treatments (no survivors at fresh) were split into low- (fresh) and high- (40 PSU) salinity stress treatments, at which survival was measured for 24 h. Short-term acclimation of adults did not appear to have a long-term affect on low-salinity tolerance, given that gradual transfers to fresh water enhanced survival relative to acute transfers in the short term (after 7 h) but not over a longer period of 8 d. Developmental acclimation had contrasting effects on low- versus high-salinity tolerance. Namely, rearing salinity had a significant effect on tolerance of high-salinity (40 PSU) stress but no significant effect on tolerance of low-salinity (freshwater) stress. In addition, there was a significant effect of clutch on survival under freshwater conditions, indicating a genetic component to low-salinity tolerance but no significant clutch effect in response to high salinity. While developmental acclimation might enhance survival at higher salinities, the minimal effect of acclimation and significant effect of clutch on low-salinity tolerance suggest the importance of natural selection during freshwater invasion events.


Assuntos
Aclimatação/fisiologia , Copépodes/fisiologia , Cloreto de Sódio/farmacologia , Aclimatação/efeitos dos fármacos , Migração Animal , Animais , Copépodes/crescimento & desenvolvimento , Água Doce , Massachusetts , Água do Mar , Seleção Genética
2.
Physiol Biochem Zool ; 75(4): 335-44, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12324889

RESUMO

This study examined the extent of phenotypic plasticity for salinity tolerance and genetic variation in plasticity in the invasive copepod Eurytemora affinis. Euryemora affinis is a species complex inhabiting brackish to hypersaline environments but has invaded freshwater lakes and reservoirs within the past century. Reaction norm experiments were performed on a relatively euryhaline population collected from a brackish lake with fluctuating salinity. Life history traits (hatching rate, survival, and development time) were measured for 20 full-sib clutches that were split and reared at four salinities (fresh, 5, 10, and 27 practical salinity units [PSU]). On average, higher salinities (10 and 27 PSU) were more favorable for larval growth, yielding greater survival and faster development rate. Clutches differed significantly in their response to salinity, with a significant genotype-by-environment interaction for development time. In addition, genetic (clutch) effects were evident in response to low salinity, given that survival in fresh (lake) water was significantly positively correlated with survival at 5 PSU for individual clutches. Clutches raised in fresh water could not survive beyond metamorphosis, suggesting that acclimation to fresh water could not occur in a single generation. Results suggest the importance of natural selection during freshwater invasion events, given the inability of plasticity to generate a freshwater phenotype, and the presence of genetic variation for plasticity upon which natural selection could act.


Assuntos
Adaptação Fisiológica , Copépodes/genética , Copépodes/fisiologia , Água Doce/química , Água Doce/parasitologia , Água do Mar/química , Cloreto de Sódio/análise , Aclimatação , Animais , Evolução Biológica , Copépodes/crescimento & desenvolvimento , Variação Genética , Genótipo , Larva/genética , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Fenótipo , Água do Mar/parasitologia , Seleção Genética , Taxa de Sobrevida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA