Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Stem Cells ; 42(3): 266-277, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38066665

RESUMO

Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-sequencing to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle. Trajectory inference in combination with a novel mouse model for tracking MuSC-derived myonuclei and in vivo labeling of DNA replication revealed an MuSC population that exhibited division-independent differentiation and fusion. These findings demonstrate that in response to a growth stimulus in the presence of intact myofibers, MuSC division is not obligatory.


Assuntos
Células-Tronco Adultas , Músculo Esquelético , Animais , Camundongos , Diferenciação Celular , Divisão Celular
2.
Circ Res ; 132(11): 1428-1443, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37154037

RESUMO

BACKGROUND: Few effective therapies exist to improve lower extremity muscle pathology and mobility loss due to peripheral artery disease (PAD), in part because mechanisms associated with functional impairment remain unclear. METHODS: To better understand mechanisms of muscle impairment in PAD, we performed in-depth transcriptomic and proteomic analyses on gastrocnemius muscle biopsies from 31 PAD participants (mean age, 69.9 years) and 29 age- and sex-matched non-PAD controls (mean age, 70.0 years) free of diabetes or limb-threatening ischemia. RESULTS: Transcriptomic and proteomic analyses suggested activation of hypoxia-compensatory mechanisms in PAD muscle, including inflammation, fibrosis, apoptosis, angiogenesis, unfolded protein response, and nerve and muscle repair. Stoichiometric proportions of mitochondrial respiratory proteins were aberrant in PAD compared to non-PAD, suggesting that respiratory proteins not in complete functional units are not removed by mitophagy, likely contributing to abnormal mitochondrial activity. Supporting this hypothesis, greater mitochondrial respiratory protein abundance was significantly associated with greater complex II and complex IV respiratory activity in non-PAD but not in PAD. Rate-limiting glycolytic enzymes, such as hexokinase and pyruvate kinase, were less abundant in muscle of people with PAD compared with non-PAD participants, suggesting diminished glucose metabolism. CONCLUSIONS: In PAD muscle, hypoxia induces accumulation of mitochondria respiratory proteins, reduced activity of rate-limiting glycolytic enzymes, and an enhanced integrated stress response that modulates protein translation. These mechanisms may serve as targets for disease modification.


Assuntos
Doença Arterial Periférica , Transcriptoma , Humanos , Idoso , Proteômica , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Hipóxia/metabolismo
3.
Am J Physiol Cell Physiol ; 326(2): C589-C605, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189132

RESUMO

The pathophysiology of muscle damage in peripheral artery disease (PAD) includes increased oxidant production and impaired antioxidant defenses. Epicatechin (EPI), a naturally occurring flavanol, has antioxidant properties that may mediate the beneficial effects of natural products such as cocoa. In a phase II randomized trial, a cocoa-flavanol-rich beverage significantly improved walking performance compared with a placebo in people with PAD. In the present work, the molecular mechanisms underlying the therapeutic effect of cocoa flavanols were investigated by analyzing baseline and follow-up muscle biopsies from participants. Increases in nuclear factor erythroid 2-related factor 2 (Nrf2) target antioxidants heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the cocoa group were significantly associated with reduced accumulation of central nuclei, a myopathy indicator, in type II muscle fibers (P = 0.017 and P = 0.023, respectively). Protein levels of the mitochondrial respiratory complex III subunit, cytochrome b-c1 complex subunit 2 (UQCRC2), were significantly higher in the cocoa group than in the placebo group (P = 0.032), and increases in UQCRC2 were significantly associated with increased levels of Nrf2 target antioxidants HO-1 and NQO1 (P = 0.001 and P = 0.035, respectively). Exposure of non-PAD human myotubes to ex vivo serum from patients with PAD reduced Nrf2 phosphorylation, an indicator of activation, increased hydrogen peroxide production and oxidative stress, and reduced mitochondrial respiration. Treatment of myotubes with EPI in the presence of serum from patients with PAD increased Nrf2 phosphorylation and protected against PAD serum-induced oxidative stress and mitochondrial dysfunction. Overall, these findings suggest that cocoa flavanols may enhance antioxidant capacity in PAD via Nrf2 activation.NEW & NOTEWORTHY The current study supports the hypothesis that in people with PAD, cocoa flavanols activate Nrf2, thereby increasing antioxidant protein levels, protecting against skeletal muscle damage, and increasing mitochondrial protein abundance. These results suggest that Nrf2 activation may be an important therapeutic target for improving walking performance in people with PAD.


Assuntos
Cacau , Catequina , Doença Arterial Periférica , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cacau/química , Catequina/metabolismo , Catequina/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Músculos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia
4.
J Physiol ; 601(4): 763-782, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533424

RESUMO

Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.


Assuntos
Envelhecimento , Reprogramação Celular , Exercício Físico , Músculo Esquelético , Animais , Humanos , Camundongos , Reprogramação Celular/genética , Modelos Animais de Doenças , Metilação de DNA , Exercício Físico/fisiologia , Perfilação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia
5.
FASEB J ; 36(2): e22155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044708

RESUMO

The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor (LIF) is robustly upregulated and can stimulate Mmp14 expression in macrophages. Functional experiments confirmed that modulation of this muscle cell-macrophage axis facilitated Type I collagen turnover. Finally, changes in LIF expression were significantly correlated with MMP14 expression in humans following 14 weeks of PRT. Our experiments reveal a mechanism whereby muscle fibers influence macrophage behavior to promote ECM remodeling in response to mechanical loading.


Assuntos
Matriz Extracelular/metabolismo , Leucócitos Mononucleares/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Humanos , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Treinamento Resistido/métodos
6.
Cell Biol Toxicol ; 39(6): 2861-2880, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37058270

RESUMO

BACKGROUND: Prolonged exposure to toxic heavy metals leads to deleterious health outcomes including kidney injury. Metal exposure occurs through both environmental pathways including contamination of drinking water sources and from occupational hazards, including the military-unique risks from battlefield injuries resulting in retained metal fragments from bullets and blast debris. One of the key challenges to mitigate health effects in these scenarios is to detect early insult to target organs, such as the kidney, before irreversible damage occurs. METHODS: High-throughput transcriptomics (HTT) has been recently demonstrated to have high sensitivity and specificity as a rapid and cost-effective assay for detecting tissue toxicity. To better understand the molecular signature of early kidney damage, we performed RNA sequencing (RNA-seq) on renal tissue using a rat model of soft tissue-embedded metal exposure. We then performed small RNA-seq analysis on serum samples from the same animals to identify potential miRNA biomarkers of kidney damage. RESULTS: We found that metals, especially lead and depleted uranium, induce oxidative damage that mainly cause dysregulated mitochondrial gene expression. Utilizing publicly available single-cell RNA-seq datasets, we demonstrate that deep learning-based cell type decomposition effectively identified cells within the kidney that were affected by metal exposure. By combining random forest feature selection and statistical methods, we further identify miRNA-423 as a promising early systemic marker of kidney injury. CONCLUSION: Our data suggest that combining HTT and deep learning is a promising approach for identifying cell injury in kidney tissue. We propose miRNA-423 as a potential serum biomarker for early detection of kidney injury.


Assuntos
MicroRNAs , Transcriptoma , Ratos , Animais , Transcriptoma/genética , Rim , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo
7.
Vasc Med ; 28(1): 28-35, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567551

RESUMO

BACKGROUND: This study evaluated the association of smoking with mitochondrial function in gastrocnemius muscle of people with peripheral artery disease (PAD). METHODS: Participants were enrolled from Chicago, Illinois and consented to gastrocnemius biopsy. Mitochondrial oxidative capacity was measured in muscle with respirometry. Abundance of voltage-dependent anion channel (VDAC) (mitochondrial membrane abundance), peroxisome proliferator-activated receptor-γ coactivator (PGC-1α) (mitochondrial biogenesis), and electron transport chain complexes I-V were measured with Western blot. RESULTS: Fourteen of 31 people with PAD (age 72.1 years, ABI 0.64) smoked cigarettes currently. Overall, there were no significant differences in mitochondrial oxidative capacity between PAD participants who currently smoked and those not currently smoking (complex I+II-mediated oxidative phosphorylation: 86.6 vs 78.3 pmolO2/s/mg, respectively [p = 0.39]). Among participants with PAD, those who currently smoked had a higher abundance of PGC-1α (p < 0.01), VDAC (p = 0.022), complex I (p = 0.021), and complex III (p = 0.021) proteins compared to those not currently smoking. People with PAD who currently smoked had lower oxidative capacity per VDAC unit (complex I+II-mediated oxidative phosphorylation [137.4 vs 231.8 arbitrary units, p = 0.030]) compared to people with PAD not currently smoking. Among people without PAD, there were no significant differences in any mitochondrial measures between currently smoking (n = 5) and those not currently smoking (n = 63). CONCLUSIONS: Among people with PAD, cigarette smoking may stimulate mitochondrial biogenesis to compensate for reduced oxidative capacity per unit of mitochondrial membrane, resulting in no difference in overall mitochondrial oxidative capacity according to current smoking status among people with PAD. However, these results were cross-sectional and a longitudinal study is needed.


Assuntos
Fumar Cigarros , Doença Arterial Periférica , Humanos , Idoso , Fumar Cigarros/efeitos adversos , Mitocôndrias/metabolismo , Músculo Esquelético/irrigação sanguínea
8.
FASEB J ; 35(10): e21893, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480776

RESUMO

Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.


Assuntos
Adaptação Fisiológica , Fibras Musculares Esqueléticas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Animais , Humanos
9.
FASEB J ; 35(6): e21644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34033143

RESUMO

How regular physical activity is able to improve health remains poorly understood. The release of factors from skeletal muscle following exercise has been proposed as a possible mechanism mediating such systemic benefits. We describe a mechanism wherein skeletal muscle, in response to a hypertrophic stimulus induced by mechanical overload (MOV), released extracellular vesicles (EVs) containing muscle-specific miR-1 that were preferentially taken up by epidydimal white adipose tissue (eWAT). In eWAT, miR-1 promoted adrenergic signaling and lipolysis by targeting Tfap2α, a known repressor of Adrß3 expression. Inhibiting EV release prevented the MOV-induced increase in eWAT miR-1 abundance and expression of lipolytic genes. Resistance exercise decreased skeletal muscle miR-1 expression with a concomitant increase in plasma EV miR-1 abundance, suggesting a similar mechanism may be operative in humans. Altogether, these findings demonstrate that skeletal muscle promotes metabolic adaptations in adipose tissue in response to MOV via EV-mediated delivery of miR-1.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Exercício Físico , Vesículas Extracelulares/fisiologia , Lipólise , MicroRNAs/genética , Músculo Esquelético/fisiopatologia , Estresse Mecânico , Fator de Transcrição AP-2/metabolismo , Adolescente , Adulto , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator de Transcrição AP-2/genética , Adulto Jovem
10.
Circ Res ; 126(5): 589-599, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32078436

RESUMO

RATIONALE: Cocoa and its major flavanol component, epicatechin, have therapeutic properties that may improve limb perfusion and increase calf muscle mitochondrial activity in people with lower extremity peripheral artery disease (PAD). OBJECTIVE: In a phase II randomized clinical trial, to assess whether 6 months of cocoa improved walking performance in people with PAD, compared with placebo. METHODS AND RESULTS: Six-month double-blind, randomized clinical trial in which participants with PAD were randomized to either cocoa beverage versus placebo beverage. The cocoa beverage contained 15 g of cocoa and 75 mg of epicatechin daily. The identical appearing placebo contained neither cocoa nor epicatechin. The 2 primary outcomes were 6-month change in 6-minute walk distance measured 2.5 hours after a study beverage at 6-month follow-up and 24 hours after a study beverage at 6-month follow-up, respectively. A 1-sided P<0.10 was considered statistically significant. Of 44 PAD participants randomized (mean age, 72.3 years [±7.1]; mean ankle brachial index, 0.66 [±0.15]), 40 (91%) completed follow-up. Adjusting for smoking, race, and body mass index, cocoa improved 6-minute walk distance at 6-month follow-up by 42.6 m ([90% CI, +22.2 to +∞] P=0.005) at 2.5 hours after a final study beverage and by 18.0 m ([90% CI, -1.7 to +∞] P=0.12) at 24 hours after a study beverage, compared with placebo. In calf muscle biopsies, cocoa improved mitochondrial COX (cytochrome c oxidase) activity (P=0.013), increased capillary density (P=0.014), improved calf muscle perfusion (P=0.098), and reduced central nuclei (P=0.033), compared with placebo. CONCLUSIONS: These preliminary results suggest a therapeutic effect of cocoa on walking performance in people with PAD. Further study is needed to definitively determine whether cocoa significantly improves walking performance in people with PAD. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02876887. Visual Overview: An online visual overview is available for this article.


Assuntos
Catequina/uso terapêutico , Chocolate , Doença Arterial Periférica/tratamento farmacológico , Caminhada , Idoso , Idoso de 80 Anos ou mais , Bebidas , Catequina/administração & dosagem , Método Duplo-Cego , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Doença Arterial Periférica/dietoterapia , Fluxo Sanguíneo Regional
11.
JAMA ; 328(13): 1315-1325, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194220

RESUMO

Importance: Patients with lower extremity peripheral artery disease (PAD) have reduced lower extremity perfusion, impaired lower extremity skeletal muscle function, and poor walking performance. Telmisartan (an angiotensin receptor blocker) has properties that reverse these abnormalities. Objective: To determine whether telmisartan improves 6-minute walk distance, compared with placebo, in patients with lower extremity PAD at 6-month follow-up. Design, Setting, and Participants: Double-blind, randomized clinical trial conducted at 2 US sites and involving 114 participants. Enrollment occurred between December 28, 2015, and November 9, 2021. Final follow-up occurred on May 6, 2022. Interventions: The trial randomized patients using a 2 × 2 factorial design to compare the effects of telmisartan plus supervised exercise vs telmisartan alone and supervised exercise alone and to compare telmisartan alone vs placebo. Participants with PAD were randomized to 1 of 4 groups: telmisartan plus exercise (n = 30), telmisartan plus attention control (n = 29), placebo plus exercise (n = 28), or placebo plus attention control (n = 27) for 6 months. The originally planned sample size was 240 participants. Due to slower than anticipated enrollment, the primary comparison was changed to the 2 combined telmisartan groups vs the 2 combined placebo groups and the target sample size was changed to 112 participants. Main Outcomes and Measures: The primary outcome was the 6-month change in 6-minute walk distance (minimum clinically important difference, 8-20 m). The secondary outcomes were maximal treadmill walking distance; Walking Impairment Questionnaire scores for distance, speed, and stair climbing; and the 36-Item Short-Form Health Survey physical functioning score. The results were adjusted for study site, baseline 6-minute walk distance, randomization to exercise vs attention control, sex, and history of heart failure at baseline. Results: Of the 114 randomized patients (mean age, 67.3 [SD, 9.9] years; 46 were women [40.4%]; and 81 were Black individuals [71.1%]), 105 (92%) completed 6-month follow-up. At 6-month follow-up, telmisartan did not significantly improve 6-minute walk distance (from a mean of 341.6 m to 343.0 m; within-group change: 1.32 m) compared with placebo (from a mean of 352.3 m to 364.8 m; within-group change: 12.5 m) and the adjusted between-group difference was -16.8 m (95% CI, -35.9 m to 2.2 m; P = .08). Compared with placebo, telmisartan did not significantly improve any of the 5 secondary outcomes. The most common serious adverse event was hospitalization for PAD (ie, lower extremity revascularization, amputation, or gangrene). Three participants (5.1%) in the telmisartan group and 2 participants (3.6%) in the placebo group were hospitalized for PAD. Conclusions and Relevance: Among patients with PAD, telmisartan did not improve 6-minute walk distance at 6-month follow-up compared with placebo. These results do not support telmisartan for improving walking performance in patients with PAD. Trial Registration: ClinicalTrials.gov Identifier: NCT02593110.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II , Teste de Esforço , Terapia por Exercício , Extremidade Inferior , Doença Arterial Periférica , Telmisartan , Idoso , Bloqueadores do Receptor Tipo 1 de Angiotensina II/efeitos adversos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Método Duplo-Cego , Teste de Esforço/efeitos dos fármacos , Feminino , Humanos , Extremidade Inferior/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/terapia , Telmisartan/efeitos adversos , Telmisartan/uso terapêutico , Caminhada
12.
Physiol Genomics ; 53(5): 206-221, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870722

RESUMO

The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as 1) predictive of hypertrophy, 2) responsive to RT independent of muscle hypertrophy, or 3) plastic with hypertrophy. Older adults (n = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- (n = 31) and post-RT (n = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks (n = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks (n = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.


Assuntos
Redes Reguladoras de Genes , Treinamento Resistido , Aumento do Músculo Esquelético/genética , Absorciometria de Fóton , Idoso , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia
13.
J Physiol ; 599(13): 3363-3384, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913170

RESUMO

KEY POINTS: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT: Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V̇O2max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.


Assuntos
Epigênese Genética , Ribossomos , Animais , Humanos , Hipertrofia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo
14.
FASEB J ; 34(5): 7018-7035, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246795

RESUMO

Over the past 20 years, various identifiers of cellular senescence have been used to quantify the abundance of these cells in different tissues. These include classic markers such as p16, senescence-associated ß-gal, and γH2AX, in addition to more recent markers (Sudan Black B and HMGB1). In vivo data on the usefulness of these markers in skeletal muscle are very limited and inconsistent. In the present study, we attempted to identify senescent cells in frozen human skeletal muscle biopsies using these markers to determine the effects of age and obesity on senescent cell burden; however, we were only able to assess the abundance of DNA-damaged nuclei using γH2AX immunohistochemistry. The abundance of γH2AX+ cells, including satellite cells, was not higher in muscle from old compared to young individuals; however, γH2AX+ cells were higher with obesity. Additionally, terminally differentiated, postmitotic myofiber nuclei from obese individuals had elevated γH2AX abundance compared to muscle from lean individuals. Analyses of gene expression support the conclusion that the elevated DNA damage and the senescence-associated secretory phenotype are preferentially associated with obesity in skeletal muscle. These data implicate obesity as a larger contributor to DNA damage in skeletal muscle than aging; however, more sensitive senescence markers for human skeletal muscle are needed to determine if these cells are in fact senescent.


Assuntos
Envelhecimento/metabolismo , Histonas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Senescência Celular , Dano ao DNA , Reparo do DNA/genética , Feminino , Humanos , Imuno-Histoquímica , Masculino , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Obesidade/patologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Adulto Jovem
15.
Arterioscler Thromb Vasc Biol ; 40(11): 2577-2585, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938218

RESUMO

This brief review summarizes current evidence regarding lower extremity peripheral artery disease (PAD) and lower extremity skeletal muscle pathology. Lower extremity ischemia is associated with reduced calf skeletal muscle area and increased calf muscle fat infiltration and fibrosis on computed tomography or magnetic resonance imaging. Even within the same individual, the leg with more severe ischemia has more adverse calf muscle characteristics than the leg with less severe ischemia. More adverse computed tomography-measured calf muscle characteristics, such as reduced calf muscle density, are associated with higher rates of mobility loss in people with PAD. Calf muscle in people with PAD may also have reduced mitochondrial activity compared with those without PAD, although evidence is inconsistent. Muscle biopsy document increased oxidative stress in PAD. Reduced calf muscle perfusion, impaired mitochondrial activity, and smaller myofibers are associated with greater walking impairment in PAD. Preliminary evidence suggests that calf muscle pathology in PAD may be reversible. In a small uncontrolled trial, revascularization improved both the ankle-brachial index and mitochondrial activity, measured by calf muscle phosphocreatine recovery time. A pilot clinical trial showed that cocoa flavanols increased measures of myofiber health, mitochondrial activity, and capillary density while simultaneously improving 6-minute walk distance in PAD. Calf muscle pathological changes are associated with impaired walking performance in people with PAD, and interventions that both increase calf perfusion and improve calf muscle health are promising therapies to improve walking performance in PAD.


Assuntos
Isquemia/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Doença Arterial Periférica/patologia , Animais , Metabolismo Energético , Tolerância ao Exercício , Humanos , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/terapia , Perna (Membro) , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Estresse Oxidativo , Doença Arterial Periférica/fisiopatologia , Doença Arterial Periférica/terapia , Prognóstico , Fluxo Sanguíneo Regional , Caminhada
16.
Am J Physiol Cell Physiol ; 318(6): C1178-C1188, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320286

RESUMO

To date, studies that have aimed to investigate the role of satellite cells during adult skeletal muscle adaptation and hypertrophy have utilized a nontranslational stimulus and/or have been performed over a relatively short time frame. Although it has been shown that satellite cell depletion throughout adulthood does not drive skeletal muscle loss in sedentary mice, it remains unknown how satellite cells participate in skeletal muscle adaptation to long-term physical activity. The current study was designed to determine whether reduced satellite cell content throughout adulthood would influence the transcriptome-wide response to physical activity and diminish the adaptive response of skeletal muscle. We administered vehicle or tamoxifen to adult Pax7-diphtheria toxin A (DTA) mice to deplete satellite cells and assigned them to sedentary or wheel-running conditions for 13 mo. Satellite cell depletion throughout adulthood reduced balance and coordination, overall running volume, and the size of muscle proprioceptors (spindle fibers). Furthermore, satellite cell participation was necessary for optimal muscle fiber hypertrophy but not adaptations in fiber type distribution in response to lifelong physical activity. Transcriptome-wide analysis of the plantaris and soleus revealed that satellite cell function is muscle type specific; satellite cell-dependent myonuclear accretion was apparent in oxidative muscles, whereas initiation of G protein-coupled receptor (GPCR) signaling in the glycolytic plantaris may require satellite cells to induce optimal adaptations to long-term physical activity. These findings suggest that satellite cells play a role in preserving physical function during aging and influence muscle adaptation during sustained periods of physical activity.


Assuntos
Fibras Musculares Esqueléticas/patologia , Condicionamento Físico Animal , Corrida , Células Satélites de Músculo Esquelético/patologia , Comportamento Sedentário , Adaptação Fisiológica , Animais , Toxina Diftérica/genética , Feminino , Regulação da Expressão Gênica , Glicólise , Hipertrofia , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Fator de Transcrição PAX7/genética , Fragmentos de Peptídeos/genética , RNA não Traduzido/genética , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Tempo
17.
Physiol Genomics ; 52(12): 575-587, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017228

RESUMO

As a consequence of military operations, many veterans suffer from penetrating wounds and long-term retention of military-grade heavy metal fragments. Fragments vary in size and location, and complete surgical removal may not be feasible or beneficial in all cases. Increasing evidence suggests retention of heavy metal fragments may have serious biological implications, including increased risks for malignant transformation. Previous studies assessed the tumorigenic effects of metal alloys in rats, demonstrating combinations of metals are sufficient to induce tumor formation after prolonged retention in skeletal muscle tissue. In this study, we analyzed transcriptional changes in skeletal muscle tissue in response to eight different military-relevant pure metals over 12 mo. We found that most transcriptional changes occur at 1 and 3 mo after metal pellets are embedded in skeletal muscle and these effects resolve at 6 and 12 mo. We also report significant immunogenic effects of nickel and cobalt and suppressive effects of lead and depleted uranium on gene expression. Overall, skeletal muscle exhibits a remarkable capacity to adapt to and recover from internalized metal fragments; however, the cellular response to chronic exposure may be restricted to the metal-tissue interface. These data suggest that unless affected regions are specifically captured by biopsy, it would be difficult to reliably detect changes in muscle gene expression that would be indicative of long-term adverse health outcomes.


Assuntos
Expressão Gênica , Metais Pesados , Músculo Esquelético , Transcriptoma , Ferimentos Penetrantes/genética , Animais , Carcinógenos , Masculino , Modelos Animais , RNA/genética , RNA/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Fatores de Tempo
18.
J Neurophysiol ; 124(6): 1571-1577, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052800

RESUMO

Changes to cerebral miRNA expression have been implicated in the progression of Alzheimer's disease (AD), as miRNAs that regulate the expression of gene products involved in amyloid beta (Aß) processing, such as BACE1, are dysregulated in those that suffer from AD. Exercise training improves cognition and reduces BACE1 and Aß-plaque burden; however, the mechanisms are not fully understood. Using our progressive weighted wheel running (PoWeR) exercise program, we assessed the effect of 20 wk of exercise training on changes in hippocampal miRNA expression in female 3xTg-AD (3xTg) mice. PoWeR was sufficient to promote muscle hypertrophy and increase myonuclear abundance. Furthermore, PoWeR elevated hippocampal Dicer gene expression in 3xTg mice, while altering miRNA expression toward a more wild-type profile. Specifically, miR-29, which is validated to target BACE1, was significantly lower in sedentary 3xTg mice when compared with wild-type but was elevated following PoWeR. Accordingly, BACE1 gene expression, along with detergent-soluble Aß1-42, was lower in PoWeR-trained 3xTg mice. Our data suggest that PoWeR training upregulates Dicer gene expression to alter cerebral miRNA expression, which may contribute to reduced Aß accumulation and delay AD progression.NEW & NOTEWORTHY Previous studies have outlined the beneficial effects of exercise on lowering BACE1 expression and reducing Aß plaques. This study extends upon the work of others by outlining a new potential mechanism by which exercise elicits beneficial effects on Alzheimer's disease pathology, specifically through modulation of Dicer and miRNA expression. This is the first study to examine Dicer and miRNA expression in the hippocampus of the 3xTg model within the context of exercise.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , RNA Helicases DEAD-box/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Fragmentos de Peptídeos/metabolismo , Condicionamento Físico Animal , Ribonuclease III/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos Transgênicos , Atividade Motora , RNA Mensageiro/metabolismo
19.
Am J Physiol Cell Physiol ; 317(6): C1247-C1255, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596607

RESUMO

The eukaryotic initiation factor 4E (eIF4E) is a major mRNA cap-binding protein that has a central role in translation initiation. Ser209 is the single phosphorylation site within eIF4E and modulates its activity in response to MAPK pathway activation. It has been reported that phosphorylation of eIF4E at Ser209 promotes translation of key mRNAs, such as cyclin D1, that regulate ribosome biogenesis. We hypothesized that phosphorylation at Ser209 is required for skeletal muscle growth in response to a hypertrophic stimulus by promoting ribosome biogenesis. To test this hypothesis, wild-type (WT) and eIF4E knocked-in (KI) mice were subjected to synergist ablation to induce muscle hypertrophy of the plantaris muscle as the result of mechanical overload; in the KI mouse, Ser209 of eIF4E was replaced with a nonphosphorylatable alanine. Contrary to our hypothesis, we observed no difference in the magnitude of hypertrophy between WT and KI groups in response to 14 days of mechanical overload induced by synergist ablation. Similarly, the increases in cyclin D1 protein levels, ribosome biogenesis, and translational capacity did not differ between WT and KI groups. Based on these findings, we conclude that phosphorylation of eIF4E at Ser209 is dispensable for skeletal muscle hypertrophy in response to mechanical overload.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Hipertrofia/genética , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Serina/metabolismo , Animais , Fenômenos Biomecânicos , Ciclina D1/genética , Ciclina D1/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Hipertrofia/metabolismo , Hipertrofia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais
20.
Am J Physiol Cell Physiol ; 317(4): C719-C724, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314585

RESUMO

It is postulated that testosterone-induced skeletal muscle hypertrophy is driven by myonuclear accretion as the result of satellite cell fusion. To directly test this hypothesis, we utilized the Pax7-DTA mouse model to deplete satellite cells in skeletal muscle followed by testosterone administration. Pax7-DTA mice (6 mo of age) were treated for 5 days with either vehicle [satellite cell replete (SC+)] or tamoxifen [satellite cell depleted (SC-)]. Following a washout period, a testosterone propionate or sham pellet was implanted for 21 days. Testosterone administration caused a significant increase in muscle fiber cross-sectional area in SC+ and SC- mice in both oxidative (soleus) and glycolytic (plantaris and extensor digitorum longus) muscles. In SC+ mice treated with testosterone, there was a significant increase in both satellite cell abundance and myonuclei that was completely absent in testosterone-treated SC- mice. These findings provide direct evidence that testosterone-induced muscle fiber hypertrophy does not require an increase in satellite cell abundance or myonuclear accretion.Listen to a podcast about this Rapid Report with senior author E. E. Dupont-Versteegden (https://ajpcell.podbean.com/e/podcast-on-paper-that-shows-testosterone-induced-skeletal-muscle-hypertrophy-does-not-need-muscle-stem-cells/).


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Testosterona/farmacologia , Animais , Modelos Animais de Doenças , Hipertrofia/induzido quimicamente , Camundongos Transgênicos , Fibras Musculares Esqueléticas/fisiologia , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA