Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Neurol Phys Ther ; 48(1): 46-53, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259190

RESUMO

BACKGROUND AND PURPOSE: Poor reactive steps may lead to falls in people with Parkinson disease (PwPD). However, whether reactive steps can be improved in PwPD at risk for falls or whether step training reduces falls remains unclear. This study aimed to determine whether 2 weeks of reactive step training result in (1) immediate and retained improvements in stepping and (2) fewer prospective falls in PwPD at fall risk. METHODS: Twenty-five PwPD (70.52 years ± 7.15; Hoehn & Yahr range 1-3) at risk for falls completed a multiple baseline, open-label, uncontrolled pre-/postintervention study. Stepping performance was assessed at 2 baseline assessments (B1 and B2) followed by a 2-week, 6-session training protocol. Stepping was assessed immediately (P1) and 2 months after training (P2). Primary outcomes were anterior-posterior margin of stability (MOS), step length, and step latency during backward stepping. Fall frequency was measured for 2 months before and after training. RESULTS: MOS during backward steps was significantly larger (better) after training ( P < 0.001, d = 0.83), and improvements were retained for 2 months ( P = 0.04, d = 0.66). Step length was not statistically significant different after training ( P = 0.13, d = 0.46) or at follow-up ( P = 0.08, d = 0.62), although effect sizes were medium and large, respectively. Step latency improved after initial exposure ( P = 0.01, d = 0.60) but not following training ( P = 0.43, d = 0.35). Twelve participants experienced fewer falls after training than before (10 = no change, 5 = increase; P = 0.12). Greater improvements in MOS were related to fewer falls ( P = 0.04). DISCUSSION AND CONCLUSIONS: Two weeks of reactive step training resulted in immediate and retained improvements in some reactive stepping outcomes in PwPD at risk for falls and may reduce fall risk. Reactive step training may be a viable approach to reduce falls in PwPD.


Assuntos
Doença de Parkinson , Humanos , Estudos Prospectivos , Equilíbrio Postural
2.
J Neurol Phys Ther ; 48(3): 165-173, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489661

RESUMO

BACKGROUND AND PURPOSE: Reactive balance training improves reactive postural control in people with Parkinson disease (PwPD). However, the extent to which reactive balance training generalizes to a novel, unpracticed reactive balance task is unknown. This study aimed to determine whether reactive training stepping through support surface translations can be generalized to an unpracticed, instrumented tether-release task. METHODS: Twenty-five PwPD (70.52 years ± 7.15; Hoehn and Yahr range 1-3) completed a multiple baseline, open-label, uncontrolled pre-post intervention study. Stepping was trained through a 2-week (6-session) intervention with repeated support surface translations. Performance on an untrained tether-release task (generalization task) was measured at 2 baseline assessments (B1 and B2, 2 weeks apart), immediately after the intervention (P1), and 2 months after training (P2). The tether-release task outcomes were the anterior-posterior margin of stability (MOS), step length, and step latency during backward and forward steps. RESULTS: After support surface translation practice, tether-release stepping performance improved in MOS, step length, and step latency for both backward and forward steps compared to baseline ( P < 0.05). Improvements in MOS and step length during backward and forward steps in the tether-release task, respectively, were related to stepping changes in the practiced task. However, the improvements in the generalization task were not retained for 2 months. DISCUSSION AND CONCLUSIONS: These findings support short-term generalization from trained balance tasks to novel, untrained tasks. These findings contribute to our understanding of the effects and generalization of reactive step training in PwPD. VIDEO ABSTRACT AVAILABLE: for more insights from the authors (see the Video, Supplemental Digital Content available at http://links.lww.com/JNPT/A465 ).


Assuntos
Doença de Parkinson , Equilíbrio Postural , Humanos , Doença de Parkinson/reabilitação , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Terapia por Exercício , Generalização Psicológica/fisiologia
3.
Arch Phys Med Rehabil ; 104(9): 1456-1464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37037293

RESUMO

OBJECTIVE: To develop a multiple sclerosis (MS)-specific model of balance and examine differences between (1) MS and neurotypical controls and (2) people with MS (PwMS) with (MS-F) and without a fall history (MS-NF). DESIGN AND SETTING: A cross-sectional study was conducted at the Gait and Balance Laboratory at the University of Kansas Medical Center. Balance was measured from the instrumented sway system (ISway) assessment. PARTICIPANTS: In total, 118 people with relapsing-remitting MS (MS-F=39; MS-NF=79) and 46 age-matched neurotypical controls. INTERVENTION: Not applicable. OUTCOME MEASURES: A total of 22 sway measures obtained from the ISway were entered into an exploratory factor analysis to identify underlying balance domains. The model-derived balance domains were compared between (1) PwMS and age-matched, neurotypical controls and (2) MS-F and MS-NF. RESULTS: Three distinct balance domains were identified: (1) sway amplitude and velocity, (2) sway frequency and jerk mediolateral, and (3) sway frequency and jerk anteroposterior, explaining 81.66% of balance variance. PwMS exhibited worse performance (ie, greater amplitude and velocity of sway) in the sway velocity and amplitude domain compared to age-matched neurotypical controls (P=.003). MS-F also exhibited worse performance in the sway velocity and amplitude domain compared to MS-NF (P=.046). The anteroposterior and mediolateral sway frequency and jerk domains were not different between PwMS and neurotypical controls nor between MS-F and MS-NF. CONCLUSIONS: This study identified a 3-factor, MS-specific balance model, demonstrating that PwMS, particularly those with a fall history, exhibit disproportionate impairments in sway amplitude and velocity. Identifying postural stability outcomes and domains that are altered in PwMS and clinically relevant (eg, related to falls) would help isolate potential treatment targets.


Assuntos
Acidentes por Quedas , Marcha , Esclerose Múltipla Recidivante-Remitente , Equilíbrio Postural , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Transversais , Modelos Neurológicos , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/fisiopatologia
4.
J Int Neuropsychol Soc ; 27(7): 733-743, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292899

RESUMO

OBJECTIVE: Freezing of gait (FoG) in Parkinson's disease (PD) has been associated with response inhibition. However, the relationship between response inhibition, neural dysfunction, and PD remains unclear. We assessed response inhibition and microstructural integrity of brain regions involved in response inhibition [right hemisphere inferior frontal cortex (IFC), bilateral pre-supplementary motor areas (preSMA), and subthalamic nuclei (STN)] in PD subjects with and without FoG and elderly controls. METHOD: Twenty-one people with PD and FoG (PD-FoG), 18 without FoG (PD-noFoG), and 19 age-matched controls (HC) completed a Stop-Signal Task (SST) and MRI scan. Probabilistic fiber tractography assessed structural integrity (fractional anisotropy, FA) among IFC, preSMA, and STN regions. RESULTS: Stop-signal performance did not differ between PD and HC, nor between PD-FoG and PD-noFoG. Differences in white matter integrity were observed across groups (.001 < p < .064), but were restricted to PD versus HC groups; no differences in FA were observed between PD-FoG and PD-noFoG (p > .096). Interestingly, worse FoG was associated with higher (better) mean FA in the r-preSMA, (ß = .547, p = .015). Microstructural integrity of the r-IFC, r-preSMA, and r-STN tracts correlated with stop-signal performance in HC (p ≤ .019), but not people with PD. CONCLUSION: These results do not support inefficient response inhibition in PD-FoG. Those with PD exhibited white matter loss in the response inhibition network, but this was not associated with FoG, nor with response inhibition deficits, suggesting FoG-specific neural changes may occur outside the response inhibition network. As shown previously, white matter loss was associated with response inhibition in elderly controls, suggesting PD may disturb this relationship.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Idoso , Encéfalo/diagnóstico por imagem , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
5.
BMC Neurol ; 19(1): 119, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31179920

RESUMO

BACKGROUND: The use of vestibular rehabilitation principles in the management of gaze and postural stability impairments in people with multiple sclerosis (PwMS) has shown promise in pilot work completed in our lab and in a recently published randomized clinical trial (RCT). However, further work is needed to fully quantify the gaze and postural impairments present in people with multiple sclerosis and how they respond to rehabilitation. METHODS/DESIGN: The study is a single blind RCT designed to examine the benefit of a gaze and postural stability (GPS) intervention program compared to a standard of care (SOC) rehabilitation program in dizzy and balance impaired PwMS. Outcomes will be collected across the domains of body structure and function, activity, and participation as classified by the World Health Organization International Classification of Functioning, Disability, and Health (ICF). Our primary outcomes are the Dizziness Handicap Inventory (DHI) and the Functional Gait Assessment (FGA). Secondary outcomes include other measures of gaze and postural stability, fatigue, and functional mobility. Participants who are interested and eligible for enrollment will be consented prior to completing a baseline assessment. Following the baseline assessment each participant will be randomized to either the GPS or SOC intervention group and will complete a 6 week treatment period. During the treatment period, both groups will participate in guided exercise 3x/week. Following the treatment period participants will be asked to return for a post-treatment evaluation and again for a follow-up assessment 1 month later. We anticipate enrolling 50 participants. DISCUSSION: This study will be an innovative RCT that will utilize gaze and postural stability metrics to assess the efficacy of vestibular rehabilitation in PwMS. It will build on previous work by examining measures across the ICF and improve the current evidence base for treating PwMS. TRIAL REGISTRATION: ClinicalTrials.gov, May 29th 2018, NCT03521557 .


Assuntos
Fixação Ocular/fisiologia , Esclerose Múltipla/reabilitação , Reabilitação Neurológica/métodos , Equilíbrio Postural/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia
6.
Arch Phys Med Rehabil ; 97(4): 513-521, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26603657

RESUMO

OBJECTIVE: To characterize postural responses to forward and backward external perturbations in people with multiple sclerosis (PwMS), and to relate performance to commonly used clinical outcomes. DESIGN: Cross-sectional study. Postural responses were tested during large stepping and smaller feet-in-place perturbations in forward and backward directions. SETTING: University research laboratory. PARTICIPANTS: PwMS (n=54) and age-matched controls (n=21) (N=75). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Center of mass displacement and step latency after external perturbations. RESULTS: PwMS exhibited larger center of mass displacements and step latencies than control participants in response to stepping perturbations (P=.003 and P=.028, respectively). Stepping deficits were more pronounced during backward stepping and were significantly correlated to increased severity on clinical measures (European Database for Multiple Sclerosis disability score and Timed 25-Foot Walk). CONCLUSIONS: Compensatory stepping is impaired in PwMS and correlates with clinical disability. Measurement of backward compensatory stepping may be more effective at identifying postural dysfunction in PwMS than forward compensatory steps. Prolonged step latencies, large anticipatory postural adjustments, and multiple compensatory steps are especially altered in PwMS, suggesting possible targets for neurorehabilitation.


Assuntos
Avaliação da Deficiência , Esclerose Múltipla/fisiopatologia , Equilíbrio Postural/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Estudos de Casos e Controles , Estudos Transversais , Feminino , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Postura , Tempo de Reação
7.
J Neurol Neurosurg Psychiatry ; 86(7): 786-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25224677

RESUMO

BACKGROUND: Freezing of gait in people with Parkinson's disease (PD) is likely related to attentional control (ie, ability to divide and switch attention). However, the neural pathophysiology of altered attentional control in individuals with PD who freeze is unknown. Structural connectivity of the pedunculopontine nucleus has been related to freezing and may play a role in altered attentional control; however, this relationship has not been investigated. We measured whether dual-task interference, defined as the reduction in gait performance during dual-task walking, is more pronounced in individuals with PD who freeze, and whether dual-task interference is associated with structural connectivity and/or executive function in this population. METHODS: We measured stride length in 13 people with PD with and 12 without freezing of gait during normal and dual-task walking. We also assessed asymmetry of pedunculopontine nucleus structural connectivity via diffusion tensor imaging and performance on cognitive tests assessing inhibition and set-shifting, cognitive domains related to freezing. RESULTS: Although stride length was not different across groups, change in stride length between normal and dual-task gait (ie, dual-task interference) was more pronounced in people with PD who freeze compared to non-freezers. Further, in people with PD who freeze, dual-task interference was correlated with asymmetry of pedunculopontine nucleus structural connectivity, Go-NoGo target accuracy (ability to release a response) and simple reaction time. CONCLUSIONS: These results support the hypothesis that freezing is related to altered attentional control during gait, and suggest that differences in pedunculopontine nucleus connectivity contribute to poorer attentional control in people with PD who freeze.


Assuntos
Função Executiva/fisiologia , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiopatologia , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Idoso , Atenção/fisiologia , Imagem de Tensor de Difusão , Marcha/fisiologia , Humanos , Pessoa de Meia-Idade , Vias Neurais/patologia , Testes Neuropsicológicos , Doença de Parkinson/patologia , Núcleo Tegmental Pedunculopontino/patologia
9.
Brain Imaging Behav ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530517

RESUMO

Reactive steps are rapid responses after balance challenges. People with Parkinson's Disease (PwPD) demonstrate impaired reactive stepping, increasing fall-risk. Although PwPD can improve steps through practice, the neural mechanisms contributing to improved reactive stepping are poorly understood. This study investigated white-matter correlates of responsiveness to reactive step training in PwPD. In an eighteen-week multiple-baseline study, participants (n = 22) underwent baseline assessments (B1 and B2 two-weeks apart), a two-week training protocol, and post-training assessments immediately (P1) and two-months (P2) post-training. Assessments involved three backward reactive step trials, measuring anterior-posterior margin of stability (AP MOS), step length, and step latency. Tract-Based Spatial Statistics correlated white-matter integrity (fractional anisotropy (FA) and radial diffusivity (RD)) with retained (P2-B2) and immediate improvements (P1-B2) in stepping. Significant and sustained improvements in step length and AP MOS were observed. Greater retention of step length improvement correlated with increased FA in the left anterior thalamic radiation (ATR), left posterior thalamic radiation (PTR), left superior longitudinal fasciculus (SLF), and right inferior longitudinal fasciculus (ILF). Step latency retention was associated with lower RD in the left posterior corona radiata and left PTR. Immediate improvements in AP MOS correlated with increased FA of the right ILF, right SLF, and right corticospinal tract. Immediate step length improvements were associated with increased FA in right and left ATR and right SLF. These findings highlight the importance of white-matter microstructural integrity in motor learning and retention processes in PD and could aid in identifying individuals with PD who would benefit most from balance rehabilitation.

10.
J Biomech ; 146: 111428, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610387

RESUMO

Virtual time-to-contact (VTC) is a promising approach for investigating postural balance control. However, current VTC calculation approaches are limited as they (1) cannot be used to evaluate directional components of balance, and (2) only assess a single, temporal aspect of balance control. This study introduces a new approach for VTC calculation, namely directional VTC, expanding VTC to assess temporal, spatial, and control aspects of balance. Three case studies were conducted across varying populations and conditions as a proof-of-concept of the presented method. The first study examined quiet stance on a firm surface in people with Parkinson's disease (PD; n = 10) in comparison to their healthy peers (n = 10). The second and third studies assessed balance control of healthy individuals under challenging environments. Ten healthy individuals participated in standing tasks on compliant ground surfaces, while another ten on oscillatory ground surfaces, all simulated by a dual-axis robotic platform. Preliminary results not only provided a closer look at balance control with multiple aspects, including temporal, spatial, and control aspects, but also showed how different aspects of balance changed due to neurological diseases (Case Study I) or challenging standing grounds (Case Studies II and III). This study advances our understanding of posture biomechanics and its clinical applications.


Assuntos
Doença de Parkinson , Postura , Humanos , Posição Ortostática , Fatores de Tempo , Equilíbrio Postural
11.
J Neurol ; 270(9): 4309-4317, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37208526

RESUMO

Over the course of the disease, freezing of gait (FoG) will gradually impact over 80% of people with Parkinson's disease (PD). Clinical decision-making and research design are often based on classification of patients as 'freezers' or 'non-freezers'. We derived an objective measure of FoG severity from inertial sensors on the legs to examine the continuum of FoG from absent to possible and severe in people with PD and in healthy controls. One hundred and forty-seven people with PD (Off-medication) and 83 healthy control subjects turned 360° in-place for 1 minute while wearing three wearable sensors used to calculate a novel Freezing Index. People with PD were classified as: 'definite freezers', new FoG questionnaire (NFOGQ) score > 0 and clinically observed FoG; 'non-freezers', NFOGQ = 0 and no clinically observed FoG; and 'possible freezers', either NFOGQ > 0 but no FoG observed or NFOGQ = 0 but FoG observed. Linear mixed models were used to investigate differences in participant characteristics among groups. The Freezing Index significantly increased from healthy controls to non-freezers to possible freezers and to definite freezers and showed, in average, excellent test-retest reliability (ICC = 0.89). Unlike the Freezing Index, sway, gait and turning impairments were similar across non-freezers, possible and definite freezers. The Freezing Index was significantly related to NFOG-Q, disease duration, severity, balance confidence, and the SCOPA-Cog (p < 0.01). An increase in the Freezing Index, objectively assessed with wearable sensors during a turning- in-place test, may help identify prodromal FoG in people with PD prior to clinically-observable or patient-perceived freezing. Future work should follow objective measures of FoG longitudinally.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Reprodutibilidade dos Testes , Marcha , Inquéritos e Questionários
12.
Neurosci Lett ; 817: 137517, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37832815

RESUMO

Reactive stepping can be improved in people with Parkinson's Disease (PwPD). However, there is variability in the responsiveness to such training. This study examined if cognition could predict the responsiveness of PwPD to a two-week reactive step training intervention. 25 PwPD (70.52 years ± 7.15; Hoehn & Yahr range 1-3) at risk for falls completed a multiple baseline, open-label, uncontrolled pre-post intervention study. Reactive stepping was trained through a two-week (six-session) intervention with repeated support surface translations. Stepping performance was measured at two baseline assessments (B1 and B2), immediately after the intervention (P1), and two months after training (P2). Primary stepping outcomes were anterior-posterior margin of stability (MOS), step length, and step latency during backward steps. The primary aim assessed whether global cognition (Scales for Outcomes in Parkinson's Disease-Cognition - SCOPA-COG, & Montreal Cognitive Assessment - MoCA) was related to two-month retention of improvements in reactive stepping after practice. The secondary aim explored whether specific cognitive domains predicted retained stepping improvements, including attention/working memory, executive function, language, memory, and visuospatial function. Greater baseline global cognition was related to better two-month retention of step length improvements (SCOPA-COG: p = 0.002, f2 = 0.31; MoCA: p = 0.002, f2 = 0.38). However, only SCOPA-COG retained statistical significance after p-value adjustment for multiple comparisons (p = 0.04). Optimal cut-point analysis revealed that a SCOPA-COG threshold of 31 or higher was optimal for identifying individuals likely to retain improvement. Specific cognitive domains did not predict changes in reactive stepping outcomes. Participants with greater baseline global cognition, particularly as measured by SCOPA-COG, demonstrated greater retention of improvements in reactive stepping. In this cohort, a SCOPA-COG threshold of 31 could predict individuals likely to benefit from the intervention. These findings highlight the potential of cognitive screening to identify people more or less likely to benefit from reactive balance training.


Assuntos
Doença de Parkinson , Humanos , Cognição , Testes de Estado Mental e Demência
13.
J Parkinsons Dis ; 13(6): 1035-1046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574744

RESUMO

BACKGROUND: The simultaneous completion of multiple tasks (dual-tasking, DT) often leads to poorer task performance (DT cost, DTC). People with Parkinson's disease (PwPD) exhibit difficulty with DT, and DTC may be particularly pronounced in PwPD with freezing of gait (FOG). OBJECTIVE: This study assessed the relationship between FOG status and DTC during gait. METHODS: Gait parameters were collected using inertial sensors in 106 PwPD (off-medication), including definite-freezers (dFOG; n = 25), possible-freezers (pFOG; n = 16), and non-freezers (nFOG; n = 65) during single (ST)-and DT walking. RESULTS: PwPD with dFOG had larger (worse) DTC than nFOG for foot-strike angle, stride length, toe-off angle, variability of foot-strike angle, and arm range of motion (ROM). After accounting for covariates, DTC for toe-off angle and stride length remained worse in PwPD who freeze. Worse cognition predicted larger DTC for stride length, gait cycle duration, gait speed, and step duration across groups. Men had larger DTC compared to women for gait speed, variability in foot-strike angle, stride length, and arm ROM. Increased variability in gait speed DTC was associated with increased disease severity. CONCLUSION: These findings provide additional support that PwPD who freeze may rely on greater cortical control for the execution of specific gait metrics. The results also underscore the importance of considering cognition when assessing DT ability in PwPD.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Masculino , Humanos , Feminino , Doença de Parkinson/complicações , Transtornos Neurológicos da Marcha/complicações , Marcha , Caminhada , Velocidade de Caminhada
14.
Gait Posture ; 97: 104-108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917700

RESUMO

BACKGROUND: The ability to produce effective posture and balance while distracted (dual-tasking; DT), is critical for mobility. In particular, individuals implicit prioritization across posture and secondary, distracting stimuli may impact fall risk. However, the impact of gender on DT and prioritization during gait is poorly understood. RESEARCH QUESTION: Does gender impact DT effects or prioritization while DT walking? METHODS: One hundred older adults participated. The timed up and go (TUG) was completed with and without a secondary cognitive task (counting backwards by 3's). Gait (time to complete the TUG), and cognitive (rate of correct numbers listed) performance was recorded during both single tasks and while dual-tasking. DT effects were calculated for cognitive and gait performance. Prioritization was calculated as the difference between cognitive and gait DT effects. The effect of gender on DT and prioritization was assessed, controlling for age and cognitive ability. RESULTS: Gender by condition (single vs. dual-task) interaction effects were observed (Gait: F1,96 =8.7; p = 0.004; Cognition: F1,96 =5.2; p = 0.024) such that, compared to male participants, females exhibited smaller cognitive DT effects, and larger gait DT effects. Further, females exhibited significantly larger prioritization scores (F1,95 =10.0, p = 0.002), indicating a cognitive prioritization compared to males. SIGNIFICANCE: Given the link between posture-second strategies and falls, the current findings may provide some insight into previous results suggesting an increased fall-risk in older-adult women. However, this study did not investigate falls. Therefore, additional work is necessary to confirm current findings and further investigate the relationship between gender, prioritization, and falls; and its possible clinical relevance.


Assuntos
Marcha , Caminhada , Idoso , Cognição , Feminino , Humanos , Masculino , Modalidades de Fisioterapia , Caminhada/psicologia
15.
Gait Posture ; 92: 30-35, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808516

RESUMO

BACKGROUND: Falls are common in persons with multiple sclerosis (PwMS). Reactive postural control-one's response to a balance perturbation-is likely an aspect of fall risk; however, the relationship between reactive posture and falls is poorly understood in PwMS. OBJECTIVE: We evaluated tibialis anterior muscle onset latency (TA latency) after balance perturbations as a predictor of fall rates in PwMS, controlling for clinical, functional, sensory, psychological, and cognitive factors. METHOD: At baseline of the 18-month cohort study, 122 participants with MS (EDSS = 2.23) were included. Assessments were conducted every 6 months. RESULTS: Of the original 122 participants at the baseline collection, data were available from 41, 39, and 34 people at the 6, 12, and 18 month follow-ups, respectively. Percent fallers at the four time points were 35.3%, 12.2%, 15.4%, and 20.5%. Cross-sectionally (i.e., at baseline), the Timed Up-and-Go, Falls Efficacy Scale - International (FES-I), and TA latency after perturbations were significant predictors of retrospective falls rates using negative binomial regression. Longitudinally, random-effects negative binomial regression found that trait-level FES-I, Stroop Color-Word, and TA latency were significant predictors for falls rates. CONCLUSION: Delays in automatic postural responses seem to account uniquely for fall rates in PwMS-beyond clinical, balance, or mobility measures. These delays may contribute to the increased fall rate in PwMS. In addition to brief self-report instruments (FES-I) and cognitive assessments, muscle onset after balance perturbations may be a valuable tool for predicting falls in those with MS.


Assuntos
Esclerose Múltipla , Estudos de Coortes , Humanos , Esclerose Múltipla/complicações , Equilíbrio Postural/fisiologia , Estudos Retrospectivos
16.
Brain Imaging Behav ; 16(4): 1552-1562, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35088352

RESUMO

Bilateral coordination of the lower extremities is an essential component of mobility. The corpus callosum bridges the two hemispheres of the brain and is integral for the coordination of such complex movements. The aim of this project was to assess structural integrity of the transcallosal sensorimotor fiber tracts and identify their associations with gait coordination using novel methods of ecologically valid mobility assessments in persons with multiple sclerosis and age-/gender-matched neurotypical adults. Neurotypical adults (n = 29) and persons with multiple sclerosis (n = 27) underwent gait and diffusion tensor imaging assessments; the lower limb coordination via Phase Coordination Index, and radial diffusivity, an indirect marker of myelination, were applied as the primary outcome measures. Persons with multiple sclerosis possessed poorer transcallosal white matter microstructural integrity of sensorimotor fiber tracts compared to the neurotypical adults. Further, persons with multiple sclerosis demonstrated significantly poorer bilateral coordination of the lower limbs during over-ground walking in comparison to an age and gender-matched neurotypical cohort. Finally, bilateral coordination of the lower limbs was significantly associated with white matter microstructural integrity of the dorsal premotor and primary motor fiber bundles in persons with multiple sclerosis, but not in neurotypical adults. This analysis revealed that persons with multiple sclerosis exhibit poorer transcallosal microstructural integrity than neurotypical peers. Furthermore, these structural deficits were correlated to poorer consistency and accuracy of gait in those with multiple sclerosis. Together, these results, emphasize the importance of transcallosal communication for gait coordination in those with multiple sclerosis.


Assuntos
Esclerose Múltipla , Substância Branca , Adulto , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Marcha , Humanos , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
17.
Phys Ther ; 102(6)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35403692

RESUMO

OBJECTIVE: Reactive stepping is critical for preventing falls and is impaired in people with multiple sclerosis (PwMS); however, which aspects of stepping relate to falls remains poorly understood. Identifying outcomes most related to falls is a first step toward improving rehabilitation for fall prevention. The purpose of this study was to assess whether reactive step latency or length during forward and backward losses of balance were related to a history of falls in PwMS. METHODS: Of the 111 PwMS who participated in this study, 76 reported no falls in the previous 6 months, whereas 36 reported 1 or more falls. Participants completed 3 forward and 3 backward treadmill-induced reactive steps from stance. Step length (centimeters) and step latency (milliseconds) were measured using motion capture and analyzed via MATLAB. RESULTS: Participants with a history of falls had significantly slower step latencies during backward stepping, but not forward stepping, than those without a history of falls. Step length did not differ between groups. Slower step latencies during backward stepping significantly increased the odds of having experienced a fall (ß = .908, SE = 0.403, odds ratio = 2.479, 95% CI = 1.125 to 5.464). CONCLUSION: PwMS and a history of falling show delayed step onsets during backward reactive stepping. Specifically, for every 10-millisecond increase in step latency, PwMS were 2.5 times more likely to have a fall history. Although clinical trials are necessary to determine whether interventions targeting reactive stepping reduce falls in PwMS, the current work indicates that the latency of steps may be a relevant target for this work. IMPACT: Subsequent fall prevention clinical trials should consider targeting backward reactive step latency to further assess its relevance for rehabilitation in PwMS. LAY SUMMARY: If you have MS and a history of falls, you may be more likely to have delayed reactive step latencies.


Assuntos
Esclerose Múltipla , Equilíbrio Postural , Teste de Esforço , Humanos , Razão de Chances
18.
Exp Gerontol ; 162: 111759, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245641

RESUMO

Quick responses to a loss of balance or "automatic postural responses" (APRs) are critical for fall prevention. The addition of a distracting task- dual-tasking (DT), typically worsens performance on mobility tasks. However, the effect of DT on APRs is unclear. We conducted a systematic review and meta-analyses to examine the effects of DT on spatial, temporal, and neuromuscular components of APRs and the effect of DT on cognitive performance. A Meta-analysis of 19 cohorts (n = 329) showed significant worsening in spatial kinematic features of APRs under DT conditions (P = 0.01), and a meta-analysis of 9 cohorts (n = 123) demonstrated later muscle onset during DT (P = 0.003). No significant DT effect was observed for temporal kinematic outcomes in 18 cohorts (n = 328; P = 0.47). Finally, significant declines in cognitive performance were evident in 20 cohorts (n = 400; P = 0.002). These results indicate that, despite the somewhat reactive nature of APRs, the addition of a secondary task negatively impacts some aspects of the response. These findings underscore the importance of cortical structures in APR generation. Given the importance of APRs for falls, identifying aspects of APRs that are altered under DT may inform fall-prevention treatment approaches.


Assuntos
Atenção , Equilíbrio Postural , Atenção/fisiologia , Fenômenos Biomecânicos , Cognição/fisiologia , Músculos , Equilíbrio Postural/fisiologia , Análise e Desempenho de Tarefas
19.
Neurorehabil Neural Repair ; 36(10-11): 678-688, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113117

RESUMO

BACKGROUND: People with multiple sclerosis (PwMS) frequently experience dizziness and imbalance that may be caused by central vestibular system dysfunction. Vestibular rehabilitation may offer an approach for improving dysfunction in these people. OBJECTIVE: To test the efficacy of a gaze and postural stability (GPS) retraining intervention compared to a strength and endurance (SAE) intervention in PwMS. METHODS: About 41 PwMS, with complaints of dizziness or history of falls, were randomized to either the GPS or SAE groups. Following randomization participants completed 6-weeks of 3×/week progressive training, delivered one-on-one by a provider. Following intervention, testing was performed at the primary (6-weeks) and secondary time point (10-weeks). A restricted maximum likelihood estimation mixed effects model was used to examine changes in the primary outcome of the Dizziness Handicap Inventory (DHI) between the 2 groups at the primary and secondary time point. Similar models were used to explore secondary outcomes between groups at both timepoints. RESULTS: Thirty-five people completed the study (17 GPS; 18 SAE). The change in the DHI at the primary time point was not statistically different between the GPS and SAE groups (mean difference = 2.33 [95% CI -9.18, 12.85]). However, both groups demonstrated significant improvement from baseline to 6-weeks (GPS -8.73; SAE -7.31). Similar results were observed for secondary outcomes and at the secondary timepoint. CONCLUSIONS: In this sample of PwMS with complaints of dizziness or imbalance, 6-weeks of GPS training did not result in significantly greater improvements in dizziness handicap or balance compared to 6-weeks of SAE training.


Assuntos
Esclerose Múltipla , Doenças Vestibulares , Humanos , Tontura/etiologia , Tontura/reabilitação , Equilíbrio Postural
20.
Gait Posture ; 84: 346-351, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33454502

RESUMO

BACKGROUND: Automatic postural responses are critical to prevent falls after a loss of balance. Although responses have been shown to be delayed in people with multiple sclerosis (PwMS), the degree to which other aspects of these movements are impacted by MS remains unknown. RESEARCH QUESTION: Do responses to in-place support-surface perturbations differ in PwMS compared to neurotypical adults? Are these responses related to a functional measure of postural response performance- center of mass (COM) displacement?. METHOD: 52 PwMS and 20 neurotypical, age-matched adults (NA) experienced backward support surface perturbations resulting in forward loss of balance and requiring an in-place response. Center of pressure (COP) and torque were calculated from force plates while center of mass (COM) approximations were collected via motion capture. Primary outcomes were maximal torque production at the foot and its timing, rate, and onset. RESULTS: PwMS and NA demonstrated no differences in maximal torque production (p = 0.79), timing of maximal torque (p = 0.29), rate of torque development (p = 0.76), or the onset of AP COP movement (p = 0.44). There was a significant negative association between the rate of torque development and forward COM displacement in both groups (Control: r=-0.64, p = 0.002; MS: r=-0.35, p = 0.01). Larger maximal torque production was also associated with smaller COM displacement in PwMS (r=-0.33, p = 0.02). CONCLUSION: Torque profiles in response to backward support surface translations resulting in feet in-place responses were similar in people with mild MS and neurotypical adults. The rate of development and maximal torque were however correlated to functional postural response outcomes. These findings suggest that while not worse in PwMS during in-place perturbations, force-responses seem to be important predictors of the effectiveness of reactive postural control responses.


Assuntos
Esclerose Múltipla/fisiopatologia , Equilíbrio Postural/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA