RESUMO
The lining of our intestinal surface contains an array of hormone-producing cells that are collectively our bodies' largest endocrine cell reservoir. These "enteroendocrine" (EE) cells reside amongst the billions of absorptive epithelial and other cell types that line our gastrointestinal tract and can sense and respond to the ever-changing internal environment in our gut. EE cells release an array of important signalling molecules that can act as hormones, including glucagon-like peptide (GLP-1) and peptide YY (PYY) which are co-secreted from L cells. While much is known about the effects of these hormones on metabolism, insulin secretion and food intake, less is understood about their secretion from human intestinal tissue. In this study we assess whether GLP-1 and PYY release differs across human small and large intestinal tissue locations within the gastrointestinal tract, and/or by sex, body weight and the age of an individual. We identify that the release of both hormones is greater in more distal regions of the human colon, but is not different between sexes. We observe a negative correlation of GLP-1 and BMI in the small, but not large, intestine. Increased aging correlates with declining secretion of both GLP-1 and PYY in human large, but not small, intestine. When the data for large intestine is isolated by region, this relationship with age remains significant for GLP-1 in the ascending and descending colon and in the descending colon for PYY. This is the first demonstration that site-specific differences in GLP-1 and PYY release occur in human gut, as do site-specific relationships of L cell secretion with aging and body mass.
RESUMO
BACKGROUND AND AIMS: Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS: Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS: A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS: Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.
Assuntos
Sistema Nervoso Entérico , Plexo Mientérico , Humanos , Sistema Nervoso Entérico/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Motores/metabolismo , Colo/inervaçãoRESUMO
Background: In the human large bowel, sacral parasympathetic nerves arise from S2 to S4, project to the pelvic plexus ("hypogastric plexus") and have post-ganglionic axons entering the large bowel near the rectosigmoid junction. They then run long distances orally or aborally within the bowel wall forming "ascending nerves" or "shunt fascicles" running in the plane of the myenteric plexus. They form bundles of nerve fibres that can be distinguished from the myenteric plexus by their straight orientation, tendency not to merge with myenteric ganglia and greater width. Aim: To identify reliable marker(s) to distinguish these bundles of ascending nerves from other extrinsic and intrinsic nerves in human colon. Methods: Human colonic segments were obtained with informed consent, from adult patients undergoing elective surgery (n = 21). Multi-layer immunohistochemical labelling with neurofilament-H (NF200), myelin basic protein (MBP), von Willebrand factor (vWF), and glucose transporter 1 (GLUT1), and rapid anterograde tracing with biotinamide, were used to compare ascending nerves and lumbar colonic nerves. Results: The rectosigmoid and rectal specimens had 6-11 ascending nerves spaced around their circumference. Distal colon specimens typically had 1-3 ascending nerves, with one located near the mesenteric taenia coli. No ascending nerves were observed in ascending colon specimens. GLUT1 antisera labelled both sympathetic lumbar colonic nerves and ascending nerves in the gut wall. Lumbar colonic nerves joined the myenteric plexus and quickly lost GLUT1 labelling, whereas GLUT1 staining labelled parasympathetic ascending nerves over many centimetres. Conclusion: Ascending nerves can be distinguished in the colorectum of humans using GLUT1 labelling combined with NF200.
RESUMO
A class of Group III muscle afferent neurons has branching sensory terminals in the connective tissue between layers of mouse abdominal muscles ("CT3 muscle afferents"). These sensory endings are both mechanosensitive and metabosensitive. In the present study, responses of CT3 afferents to lactate ions and changes in temperature were recorded. Raising muscle temperature from 32.7°C to 37°C had no consistent effects on CT3 afferent basal firing rate or responses to either von Frey hair stimulation or to an applied load. Superfusion with lactate ions (15 mM, pH 7.4) was associated with an increase in firing from 6 ± 0.7 Hz to 11.7 ± 6.7 Hz (14 units, n = 13, P < 0.05, P = 0.0484) but with considerable variability in the nature and latency of response. Reducing the concentration of extracellular divalent cations, which mimicked the chelating effects of lactate, did not increase firing. Raised concentrations of divalent cations (to compensate for chelation) did not block excitatory effects of lactate on CT3 afferents, suggesting that effects via ASIC3 were not involved. Messenger RNA for the G-protein coupled receptor, hydroxyl carboxylic acid receptor 1 (HCAR1) was detected in dorsal root ganglia and HCAR1-like immunoreactivity was present in spinal afferent nerve cell bodies retrogradely labeled from mouse abdominal muscles. HCAR1-like immunoreactivity was also present in axons in mouse abdominal muscles. This raises the possibility that some effects of lactate on group III muscle afferents may be mediated by HCAR1.