Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Biophys J ; 123(14): 2050-2062, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303511

RESUMO

Proteins are the workhorses of biology, orchestrating a myriad of cellular functions through intricate conformational changes. Protein allostery, the phenomenon where binding of ligands or environmental changes induce conformational rearrangements in the protein, is fundamental to these processes. We have previously shown that transition metal Förster resonance energy transfer (tmFRET) can be used to interrogate the conformational rearrangements associated with protein allostery and have recently introduced novel FRET acceptors utilizing metal-bipyridyl derivatives to measure long (>20 Å) intramolecular distances in proteins. Here, we combine our tmFRET system with fluorescence lifetime measurements to measure the distances, conformational heterogeneity, and energetics of maltose-binding protein, a model allosteric protein. Time-resolved tmFRET captures near-instantaneous snapshots of distance distributions, offering insights into protein dynamics. We show that time-resolved tmFRET can accurately determine distance distributions and conformational heterogeneity of proteins. Our results demonstrate the sensitivity of time-resolved tmFRET in detecting subtle conformational or energetic changes in protein conformations, which are crucial for understanding allostery. In addition, we extend the use of metal-bipyridyl compounds, showing that Cu(phen)2+ can serve as a spin label for pulse dipolar electron paramagnetic resonance (EPR) spectroscopy, a method that also reveals distance distributions and conformational heterogeneity. The EPR studies both establish Cu(phen)2+ as a useful spin label for pulse dipolar EPR and validate our time-resolved tmFRET measurements. Our approach offers a versatile tool for deciphering conformational landscapes and understanding the regulatory mechanisms governing biological processes.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Ligantes de Maltose , Conformação Proteica , Regulação Alostérica , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Fatores de Tempo
2.
Biophys J ; 123(14): 2063-2075, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38350449

RESUMO

With the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose-dependent distance changes with an accuracy of ∼1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+ and Ru2+ to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fenantrolinas , Fenantrolinas/química , Ligantes , 2,2'-Dipiridil/química , 2,2'-Dipiridil/análogos & derivados , Maltose/química , Maltose/metabolismo , Maltose/análogos & derivados , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo
3.
Soft Matter ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129466

RESUMO

Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air-water interfaces to enable REE separations. Peptide sequences, designed to selectively bind REEs, depend crucially on the position of ligands within their binding loop domain. These ligands form a coordination sphere that wraps and retains the cation. We study variants of lanthanide binding tags (LBTs) designed to complex strongly with Tb3+. The peptide LBT5- (with net charge -5) is known to bind Tb3+ and adsorb with more REE cations than peptide molecules, suggesting that undesired non-specific coulombic interactions occur. Rheological characterization of interfaces of LBT5- and Tb3+ solutions reveal the formation of an interfacial gel. To probe whether this gelation reflects chelation among intact adsorbed LBT5-:Tb3+ complexes or destruction of the binding loop, we study a variant, LBT3-, designed to form net neutral LBT3-:Tb3+ complexes. Solutions of LBT3- and Tb3+ form purely viscous layers in the presence of excess Tb3+, indicating that each peptide binds a single REE in an intact coordination sphere. We introduce the variant RR-LBT3- with net charge -3 and anionic ligands outside of the coordination sphere. We find that such exposed ligands promote interfacial gelation. Thus, a nuanced requirement for interfacial selectivity of PEPS is proposed: that anionic ligands outside of the coordination sphere must be avoided to prevent the non-selective recruitment of REE cations. This view is supported by simulation, including interfacial molecular dynamics simulations, and interfacial metadynamics simulations of the free energy landscape of the binding loop conformational space.

4.
Methods ; 218: 101-109, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549799

RESUMO

The Parkinson's disease associated protein α-synuclein (αS) has been found to contain numerous post-translational modifications (PTMs), in both physiological and pathological states. One PTM site of particular interest is serine 87, which is subject to both O-linked ß-N-acetylglucosamine (gS) modification and phosphorylation (pS), with αS-pS87 enriched in Parkinson's disease. An often-overlooked aspect of these PTMs is their effect on the membrane-binding properties of αS, which are important to its role in regulating neurotransmitter release. Here, we show how one can study these effects by synthesizing αS constructs containing authentic PTMs and labels for single molecule fluorescence correlation spectroscopy measurements. We synthesize αS-gS87 and αS-pS87 by combining native chemical ligation with genetic code expansion approaches. We introduce the fluorophore by a click reaction with a non-canonical amino acid. Beyond the specific problem of PTM effects on αS, our studies highlight the value of this combination of methods for multiply modifying proteins.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Doença de Parkinson/genética , Aminoácidos/metabolismo , Processamento de Proteína Pós-Traducional , Mutagênese
5.
J Am Chem Soc ; 145(25): 14019-14030, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319422

RESUMO

N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Acetiltransferases N-Terminal , Microscopia Crioeletrônica
6.
J Chem Inf Model ; 63(18): 5727-5733, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37552230

RESUMO

The prediction of peptide amyloidogenesis is a challenging problem in the field of protein folding. Large language models, such as the ProtBERT model, have recently emerged as powerful tools in analyzing protein sequences for applications, such as predicting protein structure and function. In this article, we describe the use of a semisupervised and fine-tuned ProtBERT model to predict peptide amyloidogenesis from sequences alone. Our approach, which we call AggBERT, achieved state-of-the-art performance, demonstrating the potential for large language models to improve the accuracy and speed of amyloid fibril prediction over simple heuristics or structure-based approaches. This work highlights the transformative potential of machine learning and large language models in the fields of chemical biology and biomedicine.


Assuntos
Aprendizado de Máquina , Peptídeos , Sequência de Aminoácidos , Amiloide , Heurística , Aprendizado de Máquina Supervisionado
7.
Biochemistry ; 61(24): 2884-2896, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473084

RESUMO

The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.


Assuntos
Proteínas de Bactérias , Resposta SOS em Genética , Proteínas de Bactérias/química , Bactérias/metabolismo , Dano ao DNA , Trifosfato de Adenosina , Recombinases Rec A/química
8.
J Am Chem Soc ; 144(17): 7911-7918, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451816

RESUMO

Arginylation is an understudied post-translational modification (PTM) involving the transfer of arginine to aspartate or glutamate sidechains in a protein. Among the targets of this PTM is α-synuclein (αS), a neuronal protein involved in regulating synaptic vesicles. The aggregation of αS is implicated in neurodegenerative diseases, particularly in Parkinson's disease, and arginylation has been found to protect against this pathological process. Arginylated αS has been studied through semisynthesis involving multipart native chemical ligation (NCL), but this can be very labor-intensive with low yields. Here, we present a facile way to introduce a mimic of the arginylation modification into a protein of interest, compatible with orthogonal installation of labels such as fluorophores. We synthesize bromoacetyl arginine and react it with recombinant, site-specific cysteine mutants of αS. We validate the mimic by testing the vesicle binding affinity of mimic-arginylated αS, as well as its aggregation kinetics and monomer incorporation into fibrils, and comparing these results to those of authentically arginylated αS produced through NCL. In cultured neurons, we compare the fibril seeding capabilities of preformed fibrils carrying a small percentage of arginylated αS. We find that, consistent with authentically arginylated αS, mimic-arginylated αS does not perturb the protein's native function but alters aggregation kinetics and monomer incorporation. Both mimic and authentically modified αS suppress aggregation in neuronal cells. Our results provide further insight into the neuroprotective effects of αS arginylation, and our alternative strategy to generate arginylated αS enables the study of this PTM in proteins not accessible through NCL.


Assuntos
Fármacos Neuroprotetores , alfa-Sinucleína , Arginina/metabolismo , Cisteína/metabolismo , Fármacos Neuroprotetores/farmacologia , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/metabolismo
9.
Chembiochem ; 22(8): 1440-1447, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33274519

RESUMO

Post-translational modifications (PTMs) can affect the normal function and pathology of α-synuclein (αS), an amyloid-fibril-forming protein linked to Parkinson's disease. Phosphorylation of αS Tyr39 has recently been found to display a dose-dependent effect on fibril formation kinetics and to alter the morphology of the fibrils. Existing methods to access site-specifically phosphorylated αS for biochemical studies include total or semi-synthesis by native chemical ligation (NCL) as well as chemoenzymatic methods to phosphorylate peptides, followed by NCL. Here, we investigated a streamlined method to produce large quantities of phosphorylated αS by co-expressing a kinase with a protein fragment in Escherichia coli. We also introduced the use of methyl thioglycolate (MTG) to enable one-pot NCL and desulfurization. We compare our optimized methods to previous reports and show that we can achieve the highest yields of site-specifically phosphorylated protein through chemoenzymatic methods using MTG, and that our strategy is uniquely well suited to producing 15 N-labeled, phosphorylated protein for NMR studies.


Assuntos
Tirosina/metabolismo , alfa-Sinucleína/biossíntese , Estrutura Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Tirosina/química , alfa-Sinucleína/química
10.
Biopolymers ; 112(1): e23384, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32740927

RESUMO

Thioamides, single atom oxygen-to-sulfur substitutions of canonical amide bonds, can be valuable probes for protein folding and protease studies. Here, we investigate the fluorescence quenching properties of thioamides incorporated into the side-chains of amino acids. We synthesize and incorporate Fmoc-protected, solid-phase peptide synthesis building blocks for introducing Nε -thioacetyl-lysine and γ-thioasparagine. Using rigid model peptides, we demonstrate the distance-dependent fluorescence quenching of these thioamides. Furthermore, we describe attempts to incorporate of Nε -thioacetyl-lysine into proteins expressed in Escherichia coli using amber codon suppression.


Assuntos
Corantes Fluorescentes/química , Tioamidas/química , Aminoácidos/química , Transferência Ressonante de Energia de Fluorescência , Peptídeos/síntese química , Peptídeos/química , Técnicas de Síntese em Fase Sólida
11.
J Am Chem Soc ; 142(52): 21786-21798, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337869

RESUMO

A variety of post-translational modifications (PTMs) are believed to regulate the behavior and function of α-synuclein (αS), an intrinsically disordered protein that mediates synaptic vesicle trafficking. Fibrils of αS are implicated in neurodegenerative disorders such as Parkinson's disease. In this study, we used chemical synthesis and biophysical techniques to characterize the neuroprotective effects of glutamate arginylation, a hitherto little characterized PTM in αS. We developed semisynthetic routes combining peptide synthesis, unnatural amino acid mutagenesis, and native chemical ligation (NCL) to site-specifically introduce the PTM of interest along with fluorescent probes into αS. We synthesized the arginylated glutamate as a protected amino acid, as well as a novel ligation handle for NCL, in order to generate full-length αS modified at various individual sites or a combination of sites. We assayed the lipid-vesicle binding affinities of arginylated αS using fluorescence correlation spectroscopy (FCS) and found that arginylated αS has the same vesicle affinity compared to control protein, suggesting that this PTM does not alter the native function of αS. On the other hand, we studied the aggregation kinetics of modified αS and found that arginylation at E83, but not E46, slows aggregation and decreases the percentage incorporation of monomer into fibrils in a dose-dependent manner. Arginylation at both sites also resulted in deceleration of fibril formation. Our study represents the first synthetic strategy for incorporating glutamate arginylation into proteins and provides insight into the neuroprotective effect of this unusual PTM.


Assuntos
Ácido Glutâmico/metabolismo , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sítios de Ligação , Mutagênese , Espectrometria de Fluorescência , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
12.
Org Biomol Chem ; 18(30): 5747-5763, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32691820

RESUMO

Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.


Assuntos
Corantes Fluorescentes
13.
J Am Chem Soc ; 141(5): 1893-1897, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30657670

RESUMO

Photoconvertible fluorophores can enable the visualization and tracking of a specific biomolecules, complexes, and cellular compartments with precise spatiotemporal control. The field of photoconvertible probes is dominated by fluorescent protein variants, which can introduce perturbations to the target biomolecules due to their large size. Here, we present a photoconvertible small molecule, termed CPX, that can be conjugated to any target through azide-alkyne cycloaddition ("click" reaction). To demonstrate its utility, we have applied CPX to study (1) trafficking of biologically relevant synthetic vesicles and (2) intracellular processes involved in transmission of α-synuclein (αS) pathology. Our results demonstrate that CPX can serve as a minimally perturbing probe for tracking the dynamics of biomolecules.


Assuntos
Compostos Aza/química , Corantes Fluorescentes/química , Bibliotecas de Moléculas Pequenas/química , alfa-Sinucleína/análise , Química Click , Estrutura Molecular , Processos Fotoquímicos
14.
Chembiochem ; 20(16): 2059-2062, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30950552

RESUMO

Thioamide substitutions of the peptide backbone have been shown to reduce proteolytic degradation, and this property can be used to generate competitive protease inhibitors and to stabilize peptides toward degradation in vivo. Here, we present a straightforward sensor design that allows a systematic study of the positional effects of thioamide substitution by using real-time fluorescence. Thioamide scanning in peptide substrates of five papain family cysteine proteases demonstrates that a thioamide at or near the scissile bond can slow proteolysis in all cases, but that the magnitude of the effects varies with position and protease in spite of high sequence homology. Mechanistic investigation of papain proteolysis reveals that the thioamide effects derive from reductions in both affinity (KM ) and turnover number (kcat ). Computational modeling allows these effects to be understood based on disruption of key enzyme-substrate hydrogen bonds, providing a model for future rational use of thioamides to confer cysteine protease resistance.


Assuntos
Cisteína Proteases/metabolismo , Corantes Fluorescentes/química , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Tioamidas/farmacologia , Corantes Fluorescentes/síntese química , Peptídeos/síntese química , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Tioamidas/química
15.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035437

RESUMO

Genetic Code Expansion (GCE) enables the encoding of amino acids with diverse chemical properties. This approach has tremendous potential to advance biological discoveries in basic research, medical, and industrial settings. Given the multiple technical approaches and the associated research activities used to achieve GCE, herein we have taken the opportunity to describe ongoing out-reach efforts in the GCE community. These include Resource Facilities that nucleate expertise and reagents within a specific GCE discipline, hands-on Workshops to provide GCE training, and GCE Conferences which bring the community together in a collegial setting. The overall goal of these activities is to accelerate the integration of GCE approaches into more research settings and to facilitate solutions to common technical hurdles.


Assuntos
Aminoácidos/genética , Código Genético , Aminoácidos/química , Engenharia Genética
16.
Biophys J ; 114(1): 53-64, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320696

RESUMO

We describe a strategy for experimentally-constraining computational simulations of intrinsically disordered proteins (IDPs), using α-synuclein, an IDP with a central role in Parkinson's disease pathology, as an example. Previously, data from single-molecule Förster Resonance Energy Transfer (FRET) experiments have been effectively utilized to generate experimentally constrained computational models of IDPs. However, the fluorophores required for single-molecule FRET experiments are not amenable to the study of short-range (<30 Å) interactions. Using ensemble FRET measurements allows one to acquire data from probes with multiple distance ranges, which can be used to constrain Monte Carlo simulations in PyRosetta. To appropriately employ ensemble FRET data as constraints, we optimized the shape and weight of constraining potentials to afford ensembles of structures that are consistent with experimental data. We also used this approach to examine the structure of α-synuclein in the presence of the compacting osmolyte trimethylamine-N-oxide. Despite significant compaction imparted by 2 M trimethylamine-N-oxide, the underlying ensemble of α-synuclein remains largely disordered and capable of aggregation, also in agreement with experimental data. These proof-of-concept experiments demonstrate that our modeling protocol enables one to efficiently generate experimentally constrained models of IDPs that incorporate atomic-scale detail, allowing one to study an IDP under a variety of conditions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Método de Monte Carlo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Regulação Alostérica
17.
J Biol Chem ; 292(32): 13482-13497, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28611062

RESUMO

Direct cell-to-cell transmission of proteopathic α-synuclein (α-syn) aggregates is thought to underlie the progression of neurodegenerative synucleinopathies. However, the specific intracellular processes governing this transmission remain unclear because currently available model systems are limited. For example, in cell culture models of α-syn-seeded aggregation, it is difficult to discern intracellular from extracellular exogenously applied α-syn seed species. Herein, we employed fluorescently labeled α-syn preformed fibrils (pffs) in conjunction with the membrane-impermeable fluorescence quencher trypan blue to selectively image internalized α-syn seeds in cultured primary neurons and to quantitatively characterize the concentration dependence, time course, and inhibition of pff uptake. To study the long-term fates of exogenous α-syn pffs in neurons, we developed a pff species labeled at amino acid residue 114 with the environmentally insensitive fluorophore BODIPY or the pH-sensitive dye pHrodo red. We found that pffs are rapidly trafficked along the endolysosomal pathway, where most of the material remains for days. We also found that brief pharmacological perturbation of lysosomes shortly after the pff treatment causes aberrations in intracellular processing of pff seeds concomitant with an increased rate of inclusion formation via recruitment of endogenous α-syn to a relatively small number of exogenous seeds. Our results validate a quantitative assay for pff uptake in primary neurons, implicate lysosomal processing as the major fate of internalized proteopathic seeds, and suggest lysosomal integrity as a significant rate-determining step in the transmission of α-syn pathology. Further, lysosomal processing of transmitted seeds may represent a new therapeutic target to combat the spread of synucleinopathies.


Assuntos
Endossomos/metabolismo , Hipocampo/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Substituição de Aminoácidos , Animais , Células Cultivadas , Corantes/análise , Embrião de Mamíferos/citologia , Endocitose , Endossomos/patologia , Endossomos/ultraestrutura , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Neurônios/patologia , Neurônios/ultraestrutura , Porfobilinogênio/análogos & derivados , Porfobilinogênio/análise , Porfobilinogênio/química , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Rodaminas/análise , Rodaminas/química , Azul Tripano/análise , alfa-Sinucleína/química , alfa-Sinucleína/genética
18.
J Am Chem Soc ; 140(30): 9486-9493, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028130

RESUMO

Small-molecule fluorescent probes are powerful tools for chemical biology; however, despite the large number of probes available, there is still a need for a simple fluorogenic scaffold, which allows for the rational design of molecules with predictable photophysical properties and is amenable to concise synthesis for high-throughput screening. Here, we introduce a highly modular quinoline-based probe containing three strategic domains that can be easily engineered and optimized for various applications. Such domains are allotted for (1) compound polarization, (2) tuning of photophysical properties, and (3) structural diversity. We successfully synthesized our probes in two steps from commercially available starting materials in overall yields of up to 95%. Facile probe synthesis was permitted by regioselective palladium-catalyzed cross-coupling, which enables combinatorial development of structurally diverse quinoline-based fluorophores. We have further applied our probes to live-cell imaging, utilizing their unique two-stage fluorescence response to intracellular pH. These studies provide a full demonstration of our strategy in rational design and stream-lined probe discovery to reveal the diverse potential of quinoline-based fluorescent compounds.


Assuntos
Corantes Fluorescentes/química , Quinolinas/química , Desenho de Fármacos , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/efeitos da radiação
19.
Biochemistry ; 56(5): 683-691, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28045494

RESUMO

Fibrillar aggregates of the protein α-synuclein (αS) are one of the hallmarks of Parkinson's disease. Here, we show that measuring the fluorescence polarization (FP) of labels at several sites on αS allows one to monitor changes in the local dynamics of the protein after binding to micelles or vesicles, and during fibril formation. Most significantly, these site-specific FP measurements provide insight into structural remodeling of αS fibrils by small molecules and have the potential for use in moderate-throughput screens to identify small molecules that could be used to treat Parkinson's disease.


Assuntos
Catequina/análogos & derivados , Dopamina/química , Masoprocol/química , Agregados Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , alfa-Sinucleína/química , Sequência de Aminoácidos , Catequina/química , Catequina/farmacologia , Dopamina/farmacologia , Polarização de Fluorescência , Corantes Fluorescentes/química , Humanos , Masoprocol/metabolismo , Fosfatidilcolinas/química , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequenas/farmacologia , Dodecilsulfato de Sódio/química , Lipossomas Unilamelares/química , Xantenos/química
20.
J Am Chem Soc ; 139(46): 16688-16695, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29130686

RESUMO

Peptide hormones are attractive as injectable therapeutics and imaging agents, but they often require extensive modification by mutagenesis and/or chemical synthesis to prevent rapid in vivo degradation. Alternatively, the single-atom, O-to-S modification of peptide backbone thioamidation has the potential to selectively perturb interactions with proteases while preserving interactions with other proteins, such as target receptors. Here, we use the validated diabetes therapeutic, glucagon-like peptide-1 (GLP-1), and the target of clinical investigation, gastric inhibitory polypeptide (GIP), as proof-of-principle peptides to demonstrate the value of thioamide substitution. In GLP-1 and GIP, a single thioamide near the scissile bond renders these peptides up to 750-fold more stable than the corresponding oxopeptides toward cleavage by dipeptidyl peptidase 4, the principal regulator of their in vivo stability. These stabilized analogues are nearly equipotent with their parent peptide in cyclic AMP activation assays, but the GLP-1 thiopeptides have much lower ß-arrestin potency, making them novel agonists with altered signaling bias. Initial tests show that a thioamide GLP-1 analogue is biologically active in rats, with an in vivo potency for glycemic control surpassing that of native GLP-1. Taken together, these experiments demonstrate the potential for thioamides to modulate specific protein interactions to increase proteolytic stability or tune activation of different signaling pathways.


Assuntos
Polipeptídeo Inibidor Gástrico/química , Peptídeo 1 Semelhante ao Glucagon/química , Tioamidas/química , Polipeptídeo Inibidor Gástrico/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Estabilidade Proteica , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA