Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Telemed J E Health ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946606

RESUMO

Background: People with rare neurological diseases (RNDs) often experience symptoms related to movement disorders, requiring a multidisciplinary approach, including rehabilitation. Telemedicine applied to rehabilitation and symptom monitoring may be suitable to ensure treatment consistency and personalized intervention. The objective of this scoping review aimed to emphasize the potential role of telerehabilitation and teleassessment in managing movement disorders within RNDs. By providing a systematic overview of the available literature, we sought to highlight potential interventions, outcomes, and critical issues. Methods: A literature search was conducted on PubMed, Google Scholar, IEEE, and Scopus up to March 2024. Two inclusion criteria were followed: (1) papers focusing on telerehabilitation and teleassessment and (2) papers dealing with movement disorders in RNDs. Results: Eighteen papers fulfilled the inclusion criteria. The main interventions were home-based software and training programs, exergames, wearable sensors, smartphone applications, virtual reality and digital music players for telerehabilitation; wearable sensors, mobile applications, and patient home video for teleassessment. Key findings revealed positive outcomes in gait, balance, limb disability, and in remote monitoring. Limitations include small sample sizes, short intervention durations, and the lack of standardized protocols. Conclusion: This review highlighted the potential of telerehabilitation and teleassessment in addressing movement disorders within RNDs. Data indicate that these modalities may play a major role in supporting conventional programs. Addressing limitations through multicenter studies, longer-term follow-ups, and standardized protocols is essential. These measures are essential for improving remote rehabilitation and assessment, contributing to an improved quality of life for people with RNDs.

2.
Arch Phys Med Rehabil ; 101(1): 106-112, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562873

RESUMO

OBJECTIVE: To evaluate retrospectively the effect of robotic rehabilitation in a large group of children with motor impairment; an additional goal was to identify the effects in children with cerebral palsy (CP) and acquired brain injury (ABI) and with different levels of motor impairment according to the Gross Motor Function Classification System. Finally, we examined the effect of time elapsed from injury on children's functions. DESIGN: A cohort, pretest-posttest retrospective study was conducted. SETTING: Hospitalized care. PARTICIPANTS: A total of 182 children, 110 with ABI and 72 with CP and with Gross Motor Function Classification System (GMFCS) levels I-IV, were evaluated retrospectively. INTERVENTIONS: Patients underwent a combined treatment of robot-assisted gait training and physical therapy. MAIN OUTCOME MEASURES: All the patients were evaluated before and after the training using the 6-minute walk test and the Gross Motor Function Measure. A linear mixed model with 3 fixed factors and 1 random factor was used to evaluate improvements. RESULTS: The 6-minute walk test showed improvement in the whole group and in both ABI and CP. The Gross Motor Function Measure showed improvement in the whole group and in the patients with ABI but not in children with CP. The GMFCS analysis showed that all outcomes improved significantly in all classes within the ABI subgroup, whereas improvements were significant only for GMFCS III in children with CP. CONCLUSIONS: Children with motor impairment can benefit from a combination of robotic rehabilitation and physical therapy. Our data suggest positive results for the whole group and substantial differences between ABI and CP subgroups, with better results for children with ABI, that seem to be consistently related to time elapsed from injury.


Assuntos
Lesões Encefálicas/complicações , Paralisia Cerebral/complicações , Transtornos Neurológicos da Marcha/reabilitação , Modalidades de Fisioterapia , Robótica/métodos , Lesões Encefálicas/fisiopatologia , Paralisia Cerebral/fisiopatologia , Criança , Feminino , Marcha , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento
3.
Sensors (Basel) ; 19(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382530

RESUMO

Moving platforms were introduced in the field of the study of posturography since the 1970s. Commercial platforms have some limits: a limited number of degrees of freedom, pre-configured protocols, and, usually, they are expensive. In order to overcome these limits, we developed a robotic platform: Dynamic Oriented Rehabilitative Integrated System (DORIS). We aimed at realizing a versatile solution that can be applied both for research purposes but also for personalizing the training of equilibrium and gait. We reached these goals by means of a Stewart platform that was realized with linear actuators and a supporting plate. Each actuator is provided by an ad hoc built monoaxial load cell. Position control allows a large range of movements and load cells measure the reactive force applied by the subject. Transmission Control Protocol/Internet Protocol (TCP/IP) guarantees the communication between the platform and other systems. We integrated DORIS with a motion analysis system, an electromyography (EMG) system, and a virtual reality environment (VR). This integration and the custom design of the platform offer the opportunity to manipulate the available information of the subject under analysis, which uses visual, vestibular, and plantar feet pressure inputs. The full access to the human movements and to the dynamic interaction is a further benefit for the identification of innovative solutions for research and physical rehabilitation purposes in a field that is widely investigated but still open.

4.
Exp Brain Res ; 234(9): 2619-27, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27165507

RESUMO

Visually impaired persons present an atypical gait pattern characterized by slower walking speed, shorter stride length and longer time of stance. Three explanatory hypotheses have been advanced in the literature: balance deficit, lack of an anticipatory mechanisms and foot probing the ground. In the present study, we compared the three hypotheses by applying their predictions to gait analysis and posturography of blind children without neurological impairment and compared their performance with that of an age-matched control group. The gait analysis results documented that blind children presented reduced walking velocity and step length, increased step width and external rotation of the foot progression angle, reduced ground reaction force and ankle maximum angle, moment and power in late stance, increased head flexion, decreased thorax flexion and pelvis anteversion, compared with the control group. The posturographic analysis showed equal skill level between blind children and normally sighted children when they close their eyes. The results are consistent with only one of the three hypotheses: namely, they prove that blind children's gait is influenced only by the absence of visually driven anticipatory control mechanisms. Finally, rehabilitative recommendations for children with blindness are advanced in discussion.


Assuntos
Fenômenos Biomecânicos/fisiologia , Cegueira/fisiopatologia , Marcha/fisiologia , Adolescente , Articulação do Tornozelo/fisiologia , Criança , Pré-Escolar , Feminino , Pé/fisiologia , Pé/fisiopatologia , Humanos , Masculino , Rotação , Visão Ocular
5.
J Neuroeng Rehabil ; 12: 41, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25900021

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is the most common hereditary autosomal recessive form of ataxia. In this disease there is early manifestation of gait ataxia, and dysmetria of the arms and legs which causes impairment in daily activities that require fine manual dexterity. To date there is no cure for this disease. Some novel therapeutic approaches are ongoing in different steps of clinical trial. Development of sensitive outcome measures is crucial to prove therapeutic effectiveness. The aim of the study was to assess the reliability and sensitivity of quantitative and objective assessment of upper limb performance computed by means of the robotic device and to evaluate the correlation with clinical and functional markers of the disease severity. METHODS: Here we assess upper limb performances by means of the InMotion Arm Robot, a robot designed for clinical neurological applications, in a cohort of 14 children and young adults affected by FRDA, matched for age and gender with 18 healthy subjects. We focused on the analysis of kinematics, accuracy, smoothness, and submovements of the upper limb while reaching movements were performed. The robotic evaluation of upper limb performance consisted of planar reaching movements performed with the robotic system. The motors of the robot were turned off, so that the device worked as a measurement tool. The status of the disease was scored using the Scale for the Assessment and Rating of Ataxia (SARA). Relationships between robotic indices and a range of clinical and disease characteristics were examined. RESULTS: All our robotic indices were significantly different between the two cohorts except for two, and were highly and reliably discriminative between healthy and subjects with FRDA. In particular, subjects with FRDA exhibited slower movements as well as loss of accuracy and smoothness, which are typical of the disease. Duration of Movement, Normalized Jerk, and Number of Submovements were the best discriminative indices, as they were directly and easily measurable and correlated with the status of the disease, as measured by SARA. CONCLUSIONS: Our results suggest that outcome measures obtained by means of robotic devices can improve the sensitivity of clinical evaluations of patients' dexterity and can accurately and efficiently quantify changes over time in clinical trials, particularly when functional scales appear to be no longer sensitive.


Assuntos
Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/fisiopatologia , Robótica/métodos , Adolescente , Adulto , Braço/fisiopatologia , Fenômenos Biomecânicos , Criança , Feminino , Ataxia de Friedreich/complicações , Humanos , Masculino , Movimento/fisiologia , Avaliação de Resultados em Cuidados de Saúde , Reprodutibilidade dos Testes , Extremidade Superior/fisiopatologia , Adulto Jovem
6.
Biomed Eng Online ; 13: 106, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25073726

RESUMO

BACKGROUND: Pointing is a motor task extensively used during daily life activities and it requires complex visuo-motor transformation to select the appropriate movement strategy. The study of invariant characteristics of human movements has led to several theories on how the brain solves the redundancy problem, but the application of these theories on children affected by hemiplegia is limited. This study aims at giving a quantitative assessment of the shoulder motor behaviour in children with hemiplegia during pointing tasks. METHODS: Eight children with hemiplegia were involved in the study and were asked to perform movements on the sagittal plane with both arms, at low and high speed. Subject movements were recorded using an optoelectronic system; a 4-DOF model of children arm has been developed to calculate kinematic and dynamic variables. A set of evaluation indexes has been extracted in order to quantitatively assess whether and how children modify their motor control strategies when perform movements with the more affected or less affected arm. RESULTS: In low speed movements, no differences can be seen in terms of movement duration and peak velocity between the More Affected arm (MA) and the Less Affected arm (LA), as well as in the main characteristics of movement kinematics and dynamics. As regards fast movements, remarkable differences in terms of strategies of motor control can be observed: while movements with LA did not show any significant difference in Dimensionless Jerk Index (JI) and Dimensionless Torque-change Cost index (TC) between the elevation and lowering phases, suggesting that motor control optimization is similar for movements performed with or against gravity, movements with MA showed a statistically significant increase of both JI and TC during lowering phase. CONCLUSIONS: Results suggest the presence of a different control strategy for fast movements in particular during lowering phase. Results suggest that motor control is not able to optimize Jerk and Torque-change cost functions in the same way when controls the two arms, suggesting that children with hemiplegia do not actively control MA lowering fast movements, in order to take advantage of the passive inertial body properties, rather than to attempt its optimal control.


Assuntos
Hemiplegia/fisiopatologia , Atividade Motora , Articulação do Ombro/fisiopatologia , Adolescente , Fenômenos Biomecânicos , Criança , Feminino , Humanos , Masculino , Modelos Biológicos , Amplitude de Movimento Articular
7.
Gait Posture ; 111: 65-74, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653178

RESUMO

BACKGROUND: Clinical gait analysis (CGA) is a systematic approach to comprehensively evaluate gait patterns, quantify impairments, plan targeted interventions, and evaluate the impact of interventions. However, international standards for CGA are currently lacking, resulting in various national initiatives. Standards are important to ensure safe and effective healthcare practices and to enable evidence-based clinical decision-making, facilitating interoperability, and reimbursement under national healthcare policies. Collaborative clinical and research work between European countries would benefit from common standards. RESEARCH OBJECTIVE: This study aimed to review the current laboratory practices for CGA in Europe. METHODS: A comprehensive survey was conducted by the European Society for Movement Analysis in Adults and Children (ESMAC), in close collaboration with the European national societies. The survey involved 97 gait laboratories across 16 countries. The survey assessed several aspects related to CGA, including equipment used, data collection, processing, and reporting methods. RESULTS: There was a consensus between laboratories concerning the data collected during CGA. The Conventional Gait Model (CGM) was the most used biomechanical model for calculating kinematics and kinetics. Respondents also reported the use of video recording, 3D motion capture systems, force plates, and surface electromyography. While there was a consensus on the reporting of CGA data, variations were reported in training, documentation, data preprocessing and equipment maintenance practices. SIGNIFICANCE: The findings of this study will serve as a foundation for the development of standardized guidelines for CGA in Europe.


Assuntos
Análise da Marcha , Humanos , Europa (Continente) , Inquéritos e Questionários , Sociedades Médicas , Fenômenos Biomecânicos , Criança , Adulto , Eletromiografia
8.
Front Neurol ; 14: 1221656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146442

RESUMO

The scientific literature on poststroke rehabilitation is remarkably vast. Over the last decades, dozens of rehabilitation approaches have been investigated. However, sometimes it is challenging to trace new experimental interventions back to some of the known models of motor control and sensorimotor learning. This scoping review aimed to investigate motor control models' diffusion among the literature on motor recovery after stroke. We performed a literature search on Medline, Cochrane, Web of Science, Embase, and Scopus databases. The last search was conducted in September 2023. This scoping review included full-text articles published in English in peer-reviewed journals that provided rehabilitation interventions based on motor control or motor learning frameworks for at least one individual with stroke. For each study, we identified the theoretical framework the authors used to design the experimental treatment. To this aim, we used a previously proposed classification of the known models of motor control, dividing them into the following categories: neuroanatomy, robotics, self-organization, and ecological context. In total, 2,185 studies were originally considered in this scoping review. After the screening process, we included and analyzed 45 studies: 20 studies were randomized controlled trials, 12 were case series, 4 were case reports, 8 were observational longitudinal pilot studies, and 1 was an uncontrolled trial. Only 10 studies explicitly declared the reference theoretical model. Considering their classification, 21 studies referred to the robotics motor control model, 12 to the self-organization model, 8 to the neuroanatomy model, and 4 to the ecological model. Our results showed that most of the rehabilitative interventions purposed in stroke rehabilitation have no clear theoretical bases on motor control and motor learning models. We suggest this is an issue that deserves attention when designing new experimental interventions in stroke rehabilitation.

9.
Brain Sci ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36672074

RESUMO

BACKGROUND: Balance impairment is a common disability in post-stroke survivors, leading to reduced mobility and increased fall risk. Robotic gait training (RAGT) is largely used, along with traditional training. There is, however, no strong evidence about RAGT superiority, especially on balance. This study aims to determine RAGT efficacy on balance of post-stroke survivors. METHODS: PubMed, Cochrane Library, and PeDRO databases were investigated. Randomized clinical trials evaluating RAGT efficacy on post-stroke survivor balance with Berg Balance Scale (BBS) or Timed Up and Go test (TUG) were searched. Meta-regression analyses were performed, considering weekly sessions, single-session duration, and robotic device used. RESULTS: A total of 18 trials have been included. BBS pre-post treatment mean difference is higher in RAGT-treated patients, with a pMD of 2.17 (95% CI 0.79; 3.55). TUG pre-post mean difference is in favor of RAGT, but not statistically, with a pMD of -0.62 (95%CI - 3.66; 2.43). Meta-regression analyses showed no relevant association, except for TUG and treatment duration (ß = -1.019, 95% CI - 1.827; -0.210, p-value = 0.0135). CONCLUSIONS: RAGT efficacy is equal to traditional therapy, while the combination of the two seems to lead to better outcomes than each individually performed. Robot-assisted balance training should be the focus of experimentation in the following years, given the great results in the first available trials. Given the massive heterogeneity of included patients, trials with more strict inclusion criteria (especially time from stroke) must be performed to finally define if and when RAGT is superior to traditional therapy.

10.
J Neuroeng Rehabil ; 9: 49, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22828181

RESUMO

BACKGROUND: The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. METHODS: A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. RESULTS: The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. CONCLUSIONS: This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia , Robótica , Extremidade Superior/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Gestos , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
11.
Front Hum Neurosci ; 16: 797282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992946

RESUMO

Background: Gait Analysis of healthy people, imitating pathological conditions while walking, has increased our understanding of biomechanical factors. The influence of the pelvis as a biomechanical constraint during gait is not specifically studied. How could mimicking a pelvic attitude influence the dynamic mechanical interaction of the body segments? We proposed an investigation of the pelvic attitude role on the gait pattern of typically developed people when they mimicked pelvic anteversion and posteroversion. Materials and methods: Seventeen healthy volunteers were enrolled in this study (mean age 24.4 ± 5.5). They simulated a pelvic anteversion and posteroversion during walking, exaggerating these postures as much as possible. 3D gait analysis was conducted using an optoelectronic system with eight cameras (Vicon MX, Oxford, United Kingdom) and two force plates (AMTI, Or-6, Watertown, MA, United States). The kinematic, kinetic, and spatio-temporal parameters were compared between the three walking conditions (anteversion, posteroversion, and normal gait). Results: In Pelvic Anteversion gait (PA) we found: increased hip flexion (p < 0.0001), increased knee flexion during stance (p = 0.02), and reduction of ankle flexion-extension Range of Motion (RoM) compared with Pelvic Normal gait (PN). In Pelvic Posteroversion gait (PP) compared with PN, we found: decreased hip flexion-extension RoM (p < 0.01) with a tendency to hip extension, decreased knee maximum extension in stance (p = 0.033), and increased ankle maximum dorsiflexion in stance (p = 0.002). Conclusion: The configuration of PA contains gait similarities and differences when compared with pathologic gait where there is an anteversion as seen in children with Cerebral Palsy (CP) or Duchenne Muscular Dystrophy (DMD). Similarly, attitudes of PP have been described in patients with Charcot-Marie-Tooth Syndrome (CMT) or patients who have undergone Pelvic Osteotomy (PO). Understanding the dynamic biomechanical constraints is essential to the assessment of pathological behavior. The central nervous system adapts motor behavior in interaction with body constraints and available resources.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35564920

RESUMO

Background: Hand trauma requires specific rehabilitation protocol depending on the different structures involved. According to type of surgical intervention, and for monitoring pain and edema, post-operative rehabilitation of a hand that has experienced trauma involves different timings for immobilization. Several protocols have been used to reduce immobilization time, and various techniques and methods are adopted, depending on the structures involved. Objective: To measure the effects of mirror neurons-based rehabilitation techniques in hand injuries throughout a systematic review and meta-analysis. Methods: The protocol was accepted in PROSPERO database. A literature search was conducted in Cinahl, Scopus, Medline, PEDro, OTseeker. Two authors independently identified eligible studies, based on predefined inclusion criteria, and extracted the data. RCT quality was assessed using the JADAD scale. Results: Seventy-nine suitable studies were screened, and only eleven were included for qualitative synthesis, while four studies were selected for quantitative analysis. Four studies were case reports/series, and seven were RCTs. Nine investigate the effect of Mirror Therapy and two the effect of Motor Imagery. Quantitative analyses revealed Mirror Therapy as effective for hand function recovery (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) (p < 0.00001) in the short term, as well as in long follow-up groups (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) (p < 0.00001). Clinical, but not statistical, efficacy was found for manual dexterity (p = 0.15), while no benefit was reported for range of motion. Conclusions: Mirror neurons-based rehabilitation techniques, combined with conventional occupational and physical therapy, can be a useful approach in hand trauma. Mirror therapy seems to be effective for hand function recovery, but, for motor imagery and action observation, there is not sufficient evidence to recommend its use. Further research on the efficacy of the mirror neurons-based technique in hand injury is recommended.


Assuntos
Traumatismos da Mão , Neurônios-Espelho , Reabilitação Neurológica , Humanos , Traumatismos da Mão/cirurgia , Modalidades de Fisioterapia , Recuperação de Função Fisiológica
13.
J Clin Med ; 11(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207341

RESUMO

BACKGROUND: Children with ataxia experience balance and movement coordination difficulties and needs intensive physical intervention to maintain functional abilities and counteract the disorder. Exergaming represents a valuable strategy to provide engaging physical intervention to children with ataxia, sustaining their motivation to perform the intervention. This paper aims to describe the effect of a home-conducted exergame-based exercise training for upper body movements control of children with ataxia on their ataxic symptoms, walking ability, and hand dexterity. METHODS: Eighteen children with ataxia were randomly divided into intervention and control groups. Participants in the intervention group were asked to follow a 12-week motor activity program at home using the Niurion® exergame. Blind assessments of participants' ataxic symptoms, dominant and non-dominant hand dexterity, and walking ability were conducted. RESULTS: On average, the participants performed the intervention for 61.5% of the expected time. At the end of the training, participants in the intervention group showed improved hand dexterity that worsened in the control group. CONCLUSION: The presented exergame enhanced the participants' hand dexterity. However, there is a need for exergames capable of maintaining a high level of players' motivation in playing. It is advisable to plan a mixed intervention to take care of the multiple aspects of the disorder.

14.
Front Hum Neurosci ; 16: 822205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422690

RESUMO

Background and Objective: Absolute angle represents the inclination of a body segment relative to a fixed reference in space. This work compares the absolute and relative angles for exploring biomechanical gait constraints. Methods: Gait patterns of different neuromotor conditions were analyzed using 3D gait analysis: normal gait (healthy, H), Cerebral Palsy (CP), Charcot Marie Tooth (CMT) and Duchenne Muscular Dystrophy (DMD), representing central and peripheral nervous system and muscular disorders, respectively. Forty-two children underwent gait analysis: 10 children affected by CP, 10 children by CMT, 10 children by DMD and 12 healthy children. The kinematic and kinetic parameters were collected to describe the biomechanical pattern of participants' lower limbs. The absolute angles of thigh, leg and foot were calculated using the trigonometric relationship of the tangent. For each absolute series, the mean, range, maximum, minimum and initial contact were calculated. Kinematic and kinetic gait data were studied, and the results were compared with the literature. Results: Statistical analysis of the absolute angles showed how, at the local level, the single segments (thigh, leg and foot) behave differently depending on the pathology. However, if the lower limb is studied globally (sum of the kinematics of the three segments: thigh, leg and foot), a biomechanical constraint emerges. Conclusion: Each segment compensates separately for the disease deficit so as to maintain a global biomechanical invariance. Using a model of inter-joint co-variation could improve the interpretation of the clinical gait pattern.

15.
NeuroRehabilitation ; 51(4): 681-691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530100

RESUMO

BACKGROUND: Robot-based treatments are developing in neurorehabilitation settings. Recently, the Italian National Health Systems recognized robot-based rehabilitation as a refundable service. Thus, the Italian neurorehabilitation community promoted a national consensus on this topic. OBJECTIVE: To conceptualize undisclosed perspectives for research and applications of robotics for neurorehabilitation, based on a qualitative synthesis of reference theoretical models. METHODS: A scoping review was carried out based on a specific question from the consensus Jury. A foreground search strategy was developed on theoretical models (context) of robot-based rehabilitation (exposure), in neurological patients (population). PubMed and EMBASE® databases were searched and studies on theoretical models of motor control, neurobiology of recovery, human-robot interaction and economic sustainability were included, while experimental studies not aimed to investigate theoretical frameworks, or considering prosthetics, were excluded. RESULTS: Overall, 3699 records were screened and finally 9 papers included according to inclusion and exclusion criteria. According to the population investigated, structured information on theoretical models and indications for future research was summarized in a synoptic table. CONCLUSION: The main indication from the Italian consensus on robotics in neurorehabilitation is the priority to design research studies aimed to investigate the role of robotic and electromechanical devices in promoting neuroplasticity.


Assuntos
Membros Artificiais , Reabilitação Neurológica , Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Itália
16.
NeuroRehabilitation ; 51(4): 649-663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35570502

RESUMO

BACKGROUND: Gait impairments are common disabling symptoms of Parkinson's disease (PD). Among the approaches for gait rehabilitation, interest in robotic devices has grown in recent years. However, the effectiveness compared to other interventions, the optimum amount of training, the type of device, and which patients might benefit most remains unclear. OBJECTIVE: To conduct a systematic review about the effects on gait of robot-assisted gait training (RAGT) in PD patients and to provide advice for clinical practice. METHODS: A search was performed on PubMed, Scopus, PEDro, Cochrane library, Web of science, and guideline databases, following PRISMA guidelines. We included English articles if they used a robotic system with details about the intervention, the parameters, and the outcome measures. We evaluated the level and quality of evidence. RESULTS: We included twenty papers out of 230 results: two systematic reviews, 9 randomized controlled trials, 4 uncontrolled studies, and 5 descriptive reports. Nine studies used an exoskeleton device and the remainders end-effector robots, with large variability in terms of subjects' disease-related disability. CONCLUSIONS: RAGT showed benefits on gait and no adverse events were recorded. However, it does not seem superior to other interventions, except in patients with more severe symptoms and advanced disease.


Assuntos
Doença de Parkinson , Robótica , Humanos , Doença de Parkinson/reabilitação , Marcha , Terapia por Exercício , Avaliação de Resultados em Cuidados de Saúde
17.
NeuroRehabilitation ; 51(4): 559-576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530097

RESUMO

BACKGROUND: Robot-assisted arm therapy (RAT) has been used mainly in stroke rehabilitation in the last 20 years with rising expectations and growing evidence summarized in systematic reviews (SRs). OBJECTIVE: The aim of this study is to provide an overview of SRs about the effectiveness, within the ICF domains, and safety of RAT in the rehabilitation of adult with stroke compared to other treatments. METHODS: The search strategy was conducted using search strings adapted explicitly for each database. A screening base on title and abstract was realized to find all the potentially relevant studies. The methodological quality of the included SRs was assessed using AMSTAR-2. A pre-determined standardized form was used to realize the data extraction. RESULTS: 18 SRs were included in this overview. Generally, positive effects from the RAT were found for motor function and muscle strength, whereas there is no agreement for muscle tone effects. No effect was found for pain, and only a SR reported the positive impact of RAT in daily living activity. CONCLUSION: RAT can be considered a valuable option to increase motor function and muscle strength after stroke. However, the poor quality of most of the included SRs could limit the certainty around the results.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Braço , Revisões Sistemáticas como Assunto
18.
NeuroRehabilitation ; 51(4): 665-679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530098

RESUMO

BACKGROUND: The use of robotic technologies in pediatric rehabilitation has seen a large increase, but with a lack of a comprehensive framework about their effectiveness. OBJECTIVE: An Italian Consensus Conference has been promoted to develop recommendations on these technologies: definitions and classification criteria of devices, indications and limits of their use in neurological diseases, theoretical models, ethical and legal implications. In this paper, we present the results for the pediatric age. METHODS: A systematic search on Cochrane Library, PEDro and PubMed was performed. Papers published up to March 1st, 2020, in English, were included and analyzed using the methodology of the Centre for Evidence-Based Medicine in Oxford, AMSTAR2 and PEDro scales for systematic reviews and RCT, respectively. RESULTS: Some positives aspects emerged in the area of gait: an increased number of children reaching the stance, an improvement in walking distance, speed and endurance. Critical aspects include the heterogeneity of the studied cases, measurements and training protocols. CONCLUSION: Many studies demonstrate the benefits of robotic training in developmental age. However, it is necessary to increase the number of trials to achieve greater homogeneity between protocols and to confirm the effectiveness of pediatric robotic rehabilitation.


Assuntos
Crianças com Deficiência , Doenças do Sistema Nervoso , Robótica , Criança , Humanos , Marcha , Robótica/métodos , Doenças do Sistema Nervoso/reabilitação , Crianças com Deficiência/reabilitação
19.
NeuroRehabilitation ; 51(4): 541-558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530099

RESUMO

BACKGROUND: Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. OBJECTIVE: To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. METHODS: The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. RESULTS: Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. CONCLUSION: Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Atividades Cotidianas , Extremidade Superior , Cognição , Recuperação de Função Fisiológica
20.
NeuroRehabilitation ; 51(4): 595-608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36502342

RESUMO

BACKGROUND: The recovery of walking after stroke is a priority goal for recovering autonomy. In the last years robotic systems employed for Robotic Assisted Gait Training (RAGT) were developed. However, literature and clinical practice did not offer standardized RAGT protocol or pattern of evaluation scales. OBJECTIVE: This systematic review aimed to summarize the available evidence on the use of RAGT in post-stroke, following the CICERONE Consensus indications. METHODS: The literature search was conducted on PubMed, Cochrane Library and PEDro, including studies with the following criteria: 1) adult post-stroke survivors with gait disability in acute/subacute/chronic phase; 2) RAGT as intervention; 3) any comparators; 4) outcome regarding impairment, activity, and participation; 5) both primary studies and reviews. RESULTS: Sixty-one articles were selected. Data about characteristics of patients, level of disability, robotic devices used, RAGT protocols, outcome measures, and level of evidence were extracted. CONCLUSION: It is possible to identify robotic devices that are more suitable for specific phase disease and level of disability, but we identified significant variability in dose and protocols. RAGT as an add-on treatment seemed to be prevalent. Further studies are needed to investigate the outcomes achieved as a function of RAGT doses delivered.


Assuntos
Transtornos Neurológicos da Marcha , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Transtornos Neurológicos da Marcha/etiologia , Marcha , Acidente Vascular Cerebral/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA