Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 25(10): 3305-3318, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180158

RESUMO

Dryland vegetation is influenced by biotic and abiotic land surface template (LST) conditions and precipitation (PPT), such that enhanced vegetation responses to periods of high PPT may be shaped by multiple factors. High PPT stochasticity in the Chihuahuan Desert suggests that enhanced responses across broad geographic areas are improbable. Yet, multiyear wet periods may homogenize PPT patterns, interact with favorable LST conditions, and in this way produce enhanced responses. In contrast, periods containing multiple extreme high PPT pulse events could overwhelm LST influences, suggesting a divergence in how climate change could influence vegetation by altering PPT periods. Using a suite of stacked remote sensing and LST datasets from the 1980s to the present, we evaluated PPT-LST-Vegetation relationships across this region and tested the hypothesis that enhanced vegetation responses would be initiated by high PPT, but that LST favorability would underlie response magnitude, producing geographic differences between wet periods. We focused on two multiyear wet periods; one of above average, regionally distributed PPT (1990-1993) and a second with locally distributed PPT that contained two extreme wet pulses (2006-2008). 1990-1993 had regional vegetation responses that were correlated with soil properties. 2006-2008 had higher vegetation responses over a smaller area that were correlated primarily with PPT and secondarily to soil properties. Within the overlapping PPT area of both periods, enhanced vegetation responses occurred in similar locations. Thus, LST favorability underlied the geographic pattern of vegetation responses, whereas PPT initiated the response and controlled response area and maximum response magnitude. Multiyear periods provide foresight on the differing impacts that directional changes in mean climate and changes in extreme PPT pulses could have in drylands. Our study shows that future vegetation responses during wet periods will be tied to LST favorability, yet will be shaped by the pattern and magnitude of multiyear PPT events.


Assuntos
Mudança Climática , Solo , Meio Ambiente
2.
Glob Chang Biol ; 24(5): 1935-1951, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29265568

RESUMO

There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT-ANPP relationships in above- and below-average PPT years to those that occurred during sequences of multiple above- and below-average years. We found differences in PPT-ANPP relationships in above- and below-average years compared to long-term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current- and prior-year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior-year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current-year PPT declined. Although the mechanisms by which a directional change in the frequency of above- and below-average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above- vs. below-average years, and illustrate the utility of long-term data to examine these patterns.


Assuntos
Pradaria , Chuva , Mudança Climática , Poaceae/fisiologia
3.
Glob Chang Biol ; 23(3): 1095-1108, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27612326

RESUMO

Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long-term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning-caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre- and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem sensitivity to multiple drivers of global environmental change.


Assuntos
Clima Desértico , Incêndios , Pradaria , Ecossistema , Poaceae , Chuva , Estações do Ano , Solo
4.
Ecology ; 97(2): 372-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27145612

RESUMO

Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.


Assuntos
Clima , Ecossistema , Estações do Ano , Tempo (Meteorologia) , Animais , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA