Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Mater ; 20(7): 925-939, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33859381

RESUMO

Commercial prosthetic devices currently do not provide natural sensory information on the interaction with objects or movements. The subsequent disadvantages include unphysiological walking with a prosthetic leg and difficulty in controlling the force exerted with a prosthetic hand, thus creating health issues. Restoring natural sensory feedback from the prosthesis to amputees is an unmet clinical need. An optimal device should be able to elicit natural sensations of touch or proprioception, by delivering the complex signals to the nervous system that would be produced by skin, muscles and joints receptors. This Review covers the various neurotechnological approaches that have been proposed for the development of the optimal sensory feedback restoration device for arm and leg amputees.


Assuntos
Amputados , Membros Artificiais , Retroalimentação Sensorial/fisiologia , Humanos , Desenho de Prótese
2.
J Neuroeng Rehabil ; 17(1): 110, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799900

RESUMO

BACKGROUND: Recent studies have shown that neural stimulation can be used to provide artificial sensory feedback to amputees eliciting sensations referred on the amputated hand. The temporal properties of the neural stimulation modulate aspects of evoked sensations that can be exploited in a bidirectional hand prosthesis. METHODS: We previously collected evidence that the derivative of the amplitude of the stimulation (intra-digit temporal dynamics) allows subjects to recognize object compliance and that the time delay among stimuli injected through electrodes implanted in different nerves (inter-digit temporal distance) allows to recognize object shapes. Nevertheless, a detailed characterization of the subjects' sensitivity to variations of intra-digit temporal dynamic and inter-digit temporal distance of the intraneural tactile feedback has not been executed. An exhaustive understanding of the overall potentials and limits of intraneural stimulation to deliver sensory feedback is of paramount importance to bring this approach closer and closer to the natural situation. To this aim, here we asked two trans-radial amputees to identify stimuli with different temporal characteristics delivered to the same active site (intra-digit temporal Dynamic Recognition (DR)) or between two active sites (inter-digit Temporal distance Recognition (TR)). Finally, we compared the results achieved for (simulated) TR with conceptually similar experiments with real objects with one subject. RESULTS: We found that the subjects were able to identify stimuli with temporal differences (perceptual thresholds) larger than 0.25 s for DR and larger than 0.125 s for TR, respectively. Moreover, we also found no statistically significant differences when the subjects were asked to identify three objects during simulated 'open-loop' TR experiments or real 'closed-loop' tests while controlling robotic hand. CONCLUSIONS: This study is a new step towards a more detailed analysis of the overall potentials and limits of intraneural sensory feedback. A full characterization is necessary to develop more advanced prostheses capable of restoring all lost functions and of being perceived more as a natural limb by users.


Assuntos
Amputados/reabilitação , Membros Artificiais , Terapia por Estimulação Elétrica/métodos , Retroalimentação Sensorial/fisiologia , Tato/fisiologia , Adulto , Feminino , Mãos/fisiologia , Humanos , Pessoa de Meia-Idade , Robótica
4.
Nat Med ; 25(9): 1356-1363, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501600

RESUMO

Conventional leg prostheses do not convey sensory information about motion or interaction with the ground to above-knee amputees, thereby reducing confidence and walking speed in the users that is associated with high mental and physical fatigue1-4. The lack of physiological feedback from the remaining extremity to the brain also contributes to the generation of phantom limb pain from the missing leg5,6. To determine whether neural sensory feedback restoration addresses these issues, we conducted a study with two transfemoral amputees, implanted with four intraneural stimulation electrodes7 in the remaining tibial nerve (ClinicalTrials.gov identifier NCT03350061). Participants were evaluated while using a neuroprosthetic device consisting of a prosthetic leg equipped with foot and knee sensors. These sensors drive neural stimulation, which elicits sensations of knee motion and the sole of the foot touching the ground. We found that walking speed and self-reported confidence increased while mental and physical fatigue decreased for both participants during neural sensory feedback compared to the no stimulation trials. Furthermore, participants exhibited reduced phantom limb pain with neural sensory feedback. The results from these proof-of-concept cases provide the rationale for larger population studies investigating the clinical utility of neuroprostheses that restore sensory feedback.


Assuntos
Amputados/reabilitação , Membros Artificiais , Joelho/fisiopatologia , Membro Fantasma/prevenção & controle , Adulto , Fenômenos Biomecânicos , Retroalimentação Sensorial , Humanos , Joelho/inervação , Masculino , Pessoa de Meia-Idade , Membro Fantasma/fisiopatologia , Velocidade de Caminhada/fisiologia
5.
Sci Transl Med ; 11(512)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578244

RESUMO

Lower limb amputation (LLA) destroys the sensory communication between the brain and the external world during standing and walking. Current prostheses do not restore sensory feedback to amputees, who, relying on very limited haptic information from the stump-socket interaction, are forced to deal with serious issues: the risk of falls, decreased mobility, prosthesis being perceived as an external object (low embodiment), and increased cognitive burden. Poor mobility is one of the causes of eventual device abandonment. Restoring sensory feedback from the missing leg of above-knee (transfemoral) amputees and integrating the sensory feedback into the sensorimotor loop would markedly improve the life of patients. In this study, we developed a leg neuroprosthesis, which provided real-time tactile and emulated proprioceptive feedback to three transfemoral amputees through nerve stimulation. The feedback was exploited in active tasks, which proved that our approach promoted improved mobility, fall prevention, and agility. We also showed increased embodiment of the lower limb prosthesis (LLP), through phantom leg displacement perception and questionnaires, and ease of the cognitive effort during a dual-task paradigm, through electroencephalographic recordings. Our results demonstrate that induced sensory feedback can be integrated at supraspinal levels to restore functional abilities of the missing leg. This work paves the way for further investigations about how the brain interprets different artificial feedback strategies and for the development of fully implantable sensory-enhanced leg neuroprostheses, which could drastically ameliorate life quality in people with disability.


Assuntos
Membros Artificiais , Cognição/fisiologia , Extremidade Inferior/cirurgia , Atividades Cotidianas , Amputados , Humanos , Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Extremidade Inferior/fisiopatologia , Desenho de Prótese
6.
Neuron ; 100(1): 37-45.e7, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30244887

RESUMO

Peripheral intraneural stimulation can provide tactile information to amputees. However, efforts are still necessary to identify encoding strategy eliciting percepts that are felt as both natural and effective for prosthesis control. Here we compared the naturalness and efficacy of different encoding strategies to deliver neural stimulation to trans-radial amputees implanted with intraneural electrodes. Biomimetic frequency modulation was perceived as more natural, while amplitude modulation enabled better performance in tasks requiring fine identification of the applied force. Notably, the optimal combination of naturalness and sensitivity of the tactile feedback can be achieved with "hybrid" encoding strategies based on simultaneous biomimetic frequency and amplitude neuromodulation. These strategies improved the gross manual dexterity of the subjects during functional task while maintaining high levels of manual accuracy. They also improved prosthesis embodiment, reducing abnormal phantom limb perceptions ("telescoping effect"). Hybrid strategies are able to provide highly sensitive and natural percepts and should be preferred. VIDEO ABSTRACT.


Assuntos
Membros Artificiais , Terapia por Estimulação Elétrica/métodos , Modelos Neurológicos , Amputados , Eletrodos Implantados , Retroalimentação Sensorial/fisiologia , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Membro Fantasma/prevenção & controle , Propriocepção/fisiologia , Tato/fisiologia
7.
Sci Transl Med ; 6(222): 222ra19, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24500407

RESUMO

Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prostheses should involve both a reliable decoding of the user's intentions and the delivery of nearly "natural" sensory feedback through remnant afferent pathways, simultaneously and in real time. However, current hand prostheses fail to achieve these requirements, particularly because they lack any sensory feedback. We show that by stimulating the median and ulnar nerve fascicles using transversal multichannel intrafascicular electrodes, according to the information provided by the artificial sensors from a hand prosthesis, physiologically appropriate (near-natural) sensory information can be provided to an amputee during the real-time decoding of different grasping tasks to control a dexterous hand prosthesis. This feedback enabled the participant to effectively modulate the grasping force of the prosthesis with no visual or auditory feedback. Three different force levels were distinguished and consistently used by the subject. The results also demonstrate that a high complexity of perception can be obtained, allowing the subject to identify the stiffness and shape of three different objects by exploiting different characteristics of the elicited sensations. This approach could improve the efficacy and "life-like" quality of hand prostheses, resulting in a keystone strategy for the near-natural replacement of missing hands.


Assuntos
Membros Artificiais , Sistemas Computacionais , Retroalimentação Sensorial/fisiologia , Mãos/fisiologia , Adulto , Estimulação Elétrica , Mãos/inervação , Força da Mão , Humanos , Masculino , Nervos Periféricos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA