Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 129(3): 259-270, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34718377

RESUMO

BACKGROUND: As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE: Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION: The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.


Assuntos
Micorrizas , Orchidaceae , Endófitos , Orchidaceae/microbiologia , Filogenia , Simbiose , Salas de Espera
2.
New Phytol ; 231(5): 2002-2014, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33983644

RESUMO

Approximately 10% of vascular plants are epiphytes and, even though this has long been ignored in past research, are able to interact with a variety of fungi, including mycorrhizal taxa. However, the structure of fungal communities on bark, as well as their relationship with epiphytic plants, is largely unknown. To fill this gap, we conducted environmental metabarcoding of the ITS-2 region to understand the spatial structure of fungal communities of the bark of tropical trees, with a focus on epiphytic orchid mycorrhizal fungi, and tested the influence of root proximity. For all guilds, including orchid mycorrhizal fungi, fungal communities were more similar when spatially close on bark (i.e. they displayed positive spatial autocorrelation). They also showed distance decay of similarity with respect to epiphytic roots, meaning that their composition on bark increasingly differed, compared to roots, with distance from roots. We first showed that all of the investigated fungal guilds exhibited spatial structure at very small scales. This spatial structure was influenced by the roots of epiphytic plants, suggesting the existence of an epiphytic rhizosphere. Finally, we showed that orchid mycorrhizal fungi were aggregated around them, possibly as a result of reciprocal influence between the mycorrhizal partners.


Assuntos
Micobioma , Micorrizas , Orchidaceae , Filogenia , Casca de Planta , Rizosfera , Análise Espacial , Simbiose
3.
Environ Microbiome ; 17(1): 38, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859141

RESUMO

BACKGROUND: The root mycobiome plays a fundamental role in plant nutrition and protection against biotic and abiotic stresses. In temperate forests or meadows dominated by angiosperms, the numerous fungi involved in root symbioses are often shared between neighboring plants, thus forming complex plant-fungus interaction networks of weak specialization. Whether this weak specialization also holds in rich tropical communities with more phylogenetically diverse sets of plant lineages remains unknown. We collected roots of 30 plant species in semi-natural tropical communities including angiosperms, ferns, and lycophytes, in three different habitat types on La Réunion island: a recent lava flow, a wet thicket, and an ericoid shrubland. We identified root-inhabiting fungi by sequencing both the 18S rRNA and the ITS2 variable regions. We assessed the diversity of mycorrhizal fungal taxa according to plant species and lineages, as well as the structure and specialization of the resulting plant-fungus networks. RESULTS: The 18S and ITS2 datasets are highly complementary at revealing the root mycobiota. According to 18S, Glomeromycotina colonize all plant groups in all habitats forming the least specialized interactions, resulting in nested network structures, while Mucoromycotina (Endogonales) are more abundant in the wetland and show higher specialization and modularity compared to the former. According to ITS2, mycorrhizal fungi of Ericaceae and Orchidaceae, namely Helotiales, Sebacinales, and Cantharellales, also colonize the roots of most plant lineages, confirming that they are frequent endophytes. While Helotiales and Sebacinales present intermediate levels of specialization, Cantharellales are more specialized and more sporadic in their interactions with plants, resulting in highly modular networks. CONCLUSIONS: This study of the root mycobiome in tropical environments reinforces the idea that mycorrhizal fungal taxa are locally shared between co-occurring plants, including phylogenetically distant plants (e.g. lycophytes and angiosperms), where they may form functional mycorrhizae or establish endophytic colonization. Yet, we demonstrate that, irrespectively of the environmental variations, the level of specialization significantly varies according to the fungal lineages, probably reflecting the different evolutionary origins of these plant-fungus symbioses. Frequent fungal sharing between plants questions the roles of the different fungi in community functioning and highlights the importance of considering networks of interactions rather than isolated hosts.

4.
Cancer Res ; 78(19): 5631-5643, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104240

RESUMO

Elucidation of the underlying molecular mechanisms of immune evasion in cancer is critical for the development of immunotherapies aimed to restore and stimulate effective antitumor immunity. Here, we evaluate the role of the actin cytoskeleton in breast cancer cell resistance to cytotoxic natural killer (NK) cells. A significant fraction of breast cancer cells responded to NK-cell attack via a surprisingly rapid and massive accumulation of F-actin near the immunologic synapse, a process we termed "actin response." Live-cell imaging provided direct evidence that the actin response is associated with tumor cell resistance to NK-cell-mediated cell death. High-throughput imaging flow cytometry analyses showed that breast cancer cell lines highly resistant to NK cells were significantly enriched in actin response-competent cells as compared with susceptible cell lines. The actin response was not associated with a defect in NK-cell activation but correlated with reduced intracellular levels of the cytotoxic protease granzyme B and a lower rate of apoptosis in target cells. Inhibition of the actin response by knocking down CDC42 or N-WASP led to a significant increase in granzyme B levels in target cells and was sufficient to convert resistant breast cancer cell lines into a highly susceptible phenotype. The actin response and its protective effects were fully recapitulated using donor-derived primary NK cells as effector cells. Together, these findings establish the pivotal role of actin remodeling in breast cancer cell resistance to NK-cell-mediated killing.Significance: These findings establish the pivotal role of the actin cytoskeleton in driving breast cancer cell resistance to natural killer cells, a subset of cytotoxic lymphocytes with important roles in innate antitumor immunity. Cancer Res; 78(19); 5631-43. ©2018 AACR.


Assuntos
Citoesqueleto de Actina/metabolismo , Neoplasias da Mama/metabolismo , Granzimas/metabolismo , Células Matadoras Naturais/metabolismo , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Resistencia a Medicamentos Antineoplásicos , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/citologia , Células MCF-7 , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA