Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 15659-15665, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819953

RESUMO

Molecular aggregation is a powerful tool for tuning advanced materials' photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp3)-H bond activation/Csp3-Csp3 coupling on the BODIPY backbone. The photoproduction progress was tracked by monitoring the evolution of the strong Stokes-shifted near-infrared emission, resulting from selective self-assembly of the terminal heterodimeric photoproduct into well-ordered J-aggregates, as revealed by X-ray structural analysis. These findings provide a facile and green route to further explore the promising frontier of packing-triggered selective photoconversions via supramolecular engineering.

2.
J Am Chem Soc ; 145(33): 18382-18390, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37525883

RESUMO

One-dimensional (1D) linear nanostructures comprising sp-hybridized carbon atoms, as derivatives of the prototypical allotrope known as carbyne, are predicted to possess outstanding mechanical, thermal, and electronic properties. Despite recent advances in their synthesis, their chemical and physical properties are still poorly understood. Here, we investigate the photophysics of a prototypical polyyne (i.e., 1D chain with alternating single and triple carbon bonds) as the simplest model of finite carbon wire and as a prototype of sp-carbon-based chains. We perform transient absorption experiments with high temporal resolution (<30 fs) on monodispersed hydrogen-capped hexayne H─(C≡C)6─H synthesized by laser ablation in liquid. With the support of computational studies based on ground state density functional theory (DFT) and excited state time-dependent (TD)-DFT calculations, we provide a comprehensive description of the excited state relaxation processes at early times following photoexcitation. We show that the internal conversion from a bright high-energy singlet excited state to a low-lying singlet dark state is ultrafast and takes place with a 200 fs time constant, followed by thermalization on the picosecond time scale and decay of the low-energy singlet state with hundreds of picoseconds time constant. We also show that the time scale of these processes does not depend on the end groups capping the sp-carbon chain. The understanding of the primary photoinduced events in polyynes is of key importance both for fundamental knowledge and for potential optoelectronic and light-harvesting applications of low-dimensional nanostructured carbon-based materials.

3.
Chemphyschem ; 24(13): e202300127, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066799

RESUMO

Benzothiazole is among prominent electron-withdrawing heteroarene moieties used in a variety of π-conjugated molecules. Its relative orientation with respect to the principal dipole vector(s) of chromophores derived thereof is crucial, affecting photophysical and nonlinear optical properties. Here we compare the photophysics and ultrafast dynamics of dipolar and octupolar molecules comprising a triphenylamine electron-donating core, ethynylene π-conjugated linker(s) and benzothiazole acceptor(s) having the matched or mismatched orientation (with respect to the direction of intramolecular charge transfer), while a carbaldehyde group is attached as an auxiliary acceptor. Among chromophores without the auxiliary acceptor, stronger fluorescence solvatochromism and faster excited state dynamics are exhibited for the derivatives with the mismatched geometry. On the contrary, introduction of the auxiliary acceptor to the benzothiazole unit enhances the intramolecular charge transfer ICT (featuring ultrafast dynamics of the excited state) for the matched geometry. The data confirm the crucial role of the relative orientation of asymmetric heteroaromatic unit (regioisomeric effect) in dipolar as well as in multipolar molecules in tuning linear and nonlinear optical properties as well as excited state dynamics.

4.
J Phys Chem A ; 127(49): 10435-10449, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051114

RESUMO

In this work, we show how the structural features of photoactive azobenzene derivatives can influence the photoexcited state behavior and the yield of the trans/cis photoisomerization process. By combining high-resolution transient absorption experiments in the vis-NIR region and quantum chemistry calculations (TDDFT and RASPT2), we address the origin of the transient signals of three poly-substituted push-pull azobenzenes with an increasing strength of the intramolecular interactions stabilizing the planar trans isomer (absence of intramolecular H-bonds, methyl, and traditional H-bond, respectively, for 4-diethyl-4'-nitroazobenzene, Disperse Blue 366, and Disperse Blue 165) and a commercial red dye showing keto-enol tautomerism involving the azo group (Sudan Red G). Our results indicate that the intramolecular H-bonds can act as a "molecular lock" stabilizing the trans isomer and increasing the energy barrier along the photoreactive CNNC torsion coordinate, thus preventing photoisomerization in the Disperse Blue dyes. In contrast, the involvement of the azo group in keto-enol tautomerism can be employed as a strategy to change the nature of the lower excited state and remove the nonproductive symmetric CNN/NNC bending pathway typical of the azo group, thus favoring the productive torsional motion. Taken together, our results can provide guidelines for the structural design of azobenzene-based photoswitches with a tunable excited state behavior.

5.
Photosynth Res ; 144(2): 221-233, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32052255

RESUMO

The kinetics of excited-state energy migration were investigated by femtosecond transient absorption in the isolated Photosystem I-Light-Harvesting Complex I (PSI-LHCI) supercomplex and in the isolated PSI core complex of spinach under conditions in which the terminal electron donor P700 is chemically pre-oxidised. It is shown that, under these conditions, the relaxation of the excited state is characterised by lifetimes of about 0.4 ps, 4.5 ps, 15 ps, 35 ps and 65 ps in PSI-LHCI and 0.15 ps, 0.3 ps, 6 ps and 16 ps in the PSI core complex. Compartmental spectral-kinetic modelling indicates that the most likely mechanism to explain the absence of long-lived (ns) excited states is the photochemical population of a radical pair state, which cannot be further stabilised and decays non-radiatively to the ground state with time constants in the order of 6-8 ps.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema I/química , Proteínas de Plantas/química , Clorofila/química , Embriófitas/química , Embriófitas/metabolismo , Transferência de Energia , Cinética , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Análise Espectral/métodos , Spinacia oleracea/química
6.
J Phys Chem Lett ; 15(13): 3639-3645, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530860

RESUMO

Eumelanins play a crucial role as photoprotective agents for living organisms, yet the nature of the stationary and transient species involved in the light absorption and deactivation processes remains controversial. Moreover, the critical sub-100 fs time scale, which is key to the characterization of the primary excited species, has remained unexplored. Here, we study the eumelanin analogue polydopamine (PDA) and employ a combination of steady-state and transient optical spectroscopies to reveal the presence of spectrally broad coupled electronic transitions with, at least partial, charge-transfer (CT) character. We monitor the CT state dynamics using tunable sub-20 fs pulses. We find that high photon energy excitation results in accelerated (sub-20 fs) CT formation times while activating pathways, which lead to long-lived (≫1 ns), possibly reactive CT species. On the other hand, visible light excitation results in a slower (≈45 fs) formation of bound CT states, which, however, recombine on the ultrafast sub-2 ps time scale.

7.
Nat Commun ; 15(1): 4900, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851775

RESUMO

Excitation energy transfer (EET) is a key photoinduced process in biological chromophoric assemblies. Here we investigate the factors which can drive EET into efficient ultrafast sub-ps regimes. We demonstrate how a coherent transport of electronic population could facilitate this in water solvated NADH coenzyme and uncover the role of an intermediate dark charge-transfer state. High temporal resolution ultrafast optical spectroscopy gives a 54±11 fs time constant for the EET process. Nonadiabatic quantum dynamical simulations computed through the time-evolution of multidimensional wavepackets suggest that the population transfer is mediated by photoexcited molecular vibrations due to strong coupling between the electronic states. The polar aqueous solvent environment leads to the active participation of a dark charge transfer state, accelerating the vibronically coherent EET process in favorably stacked conformers and solvent cavities. Our work demonstrates how the interplay of structural and environmental factors leads to diverse pathways for the EET process in flexible heterodimers and provides general insights relevant for coherent EET processes in stacked multichromophoric aggregates like DNA strands.


Assuntos
Transferência de Energia , NAD , NAD/química , NAD/metabolismo , Teoria Quântica , Água/química
8.
J Phys Chem Lett ; 15(16): 4461-4467, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38630018

RESUMO

Internal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule. Through a combination of ultrafast multidimensional spectroscopies and theoretical modeling, we observe a 60 fs Qy-Qx IC and demonstrate that it is driven by the interplay among multiple high-frequency modes. Notably, we identify 1510 cm-1 as the leading tuning mode that brings the porphyrin to an optimal geometry for energy surface crossing. By employing coherent wave packet analysis, we highlight a set of short-lived vibrations (1200-1400 cm-1), promoting the IC within ≈60 fs. Furthermore, we identify one coupling mode (1350 cm-1) that is responsible for vibronic mixing within the Q states. Our findings indicate that porphyrin-core functionalization modulates IC effectively, offering new opportunities in photocatalysis and optoelectronics.

9.
J Phys Chem Lett ; 14(45): 10219-10224, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37931204

RESUMO

The DNA polarity, i.e., the order in which nucleobases are connected together via the phosphodiester backbone, is crucial for several biological processes. But, so far, there has not been experimental evidence regarding its effect on the relaxation of DNA electronic excited states. Here we examine this aspect for two dinucleotides containing adenine and guanine: 5'-dApdG-3' and 5'-dGpdA-3' in water. We used two different femtosecond transient absorption setups: one providing high temporal resolution and broad spectral coverage (330-650 nm) between 30 fs and 50 ps, and the other recording decays at selected wavelengths until 1.2 ns. The transient absorption spectra corresponding to the minima in the potential energy surface of the first excited state were computed by quantum chemistry methods. Our results show that the excited charge transfer state in 5'-dGpdA-3' is formed with a ∼75% higher quantum yield and exhibits slower decay (170 ± 10 ps vs 112 ± 12 ps) compared to 5'-dApdG-3'.


Assuntos
DNA , Água
10.
Nanoscale ; 14(19): 7233-7241, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35511223

RESUMO

The effect of local photo-triggered heat release on the motion of organic nanopartcles (NP), a process that is itself thermal, is largely unexplored under low-intensity irradiation. Here, we develop organic NP specifically tailored for this study and demonstrate, comparing three different irradiation intensity regimes, that indeed the NP undergo "acceleration" upon light absorption (Photothermal Motion). These NP have a well-defined chemical composition and extremely high molar absorbance coefficient, and upon excitation, they deactivate mostly non radiatively with localized heat dissipation. The residual fluorescence efficiency is high enough to allow the detection of their trajectory in a simple wide field fluorescence microscope under low-intensity irradiation, a typical condition for NP bio-applications. The NP were characterized in detail from the photophysical point of view using UV-VIS absorption, steady-state and time-resolved fluorescence spectroscopy and ultra-fast transient absorption (UF-TA). A detailed analysis of the trajectories of the NP reveals a strong dependency of the diffusion coefficient on the irradiation intensity even in a low power regime. This behavior demonstrates the inhomogeneity of the environment surrounding the NP as a result of local heat generation. Upon irradiation, the effective temperature increase, that emerges from the analysis, is much larger than that expected for plasmonic NP. Anomalous diffusion object-motion analysis (ADOMA) revealed that, in the more intense irradiation regime, the motion of the NP is a fractional Brownian motion, which is a simple generalization of Brownian motion where the steps are not independent of each other.

11.
J Phys Chem B ; 126(42): 8532-8543, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36256786

RESUMO

We investigate herein the excited state dynamics and symmetry breaking processes in three benzothiazole-derived two-photon absorbing chromophores by femtosecond fluorescence and transient absorption (fs-TA) spectroscopies in solvents of various polarity. The chromophores feature a quasi-quadrupolar D-π-A-π-D architecture comprised of an electron-withdrawing benzothiazole core and lateral triphenylamine donors (Qbtz-H), while the acceptor strength of the central unit is enforced by attached cyano groups (Qbtz-CN) and the electron-donating strength of the arylamine moieties by introduction of peripheral methoxy groups (Qbtz'-CN). Steady state spectroscopy reveals positive solvatochromism, which is mostly pronounced for Qbtz'-CN. Femtosecond spectroscopy of Qbtz-H reveals the coexistence of the Franck-Condon (FC) state and states populated after symmetry breaking (SB) in low-polarity solvents such as toluene and tetrahydrofuran, while the SB state becomes favorable in polar acetonitrile. For the other two molecules possessing a stronger electron-accepting unit and thus more polar excited state, SB takes place even in low-polarity solvents, as shown by fs-TA spectroscopy. Global fitting of the fs-TA spectra together with investigation of the evolution associated spectra (EAS) reveals the existence of an initial FC state in Qbtz-H, in all studied solvents, which relaxes toward Intermediate Charge Transfer (I-CT) and SB states. On the other hand, for Qbtz-CN and Qbtz'-CN in more polar solvents, the FC state undergoes ultrafast relaxation toward symmetry-broken charge transfer (SB-CT) states which in turn show very fast recombination to the ground state. Our measurements confirm that the extent of symmetry breaking is larger for D-π-A-π-D systems with the stronger acceptor core and increases further by increasing electron-donating strength of triarylamine moieties, giving rise to symmetry breaking in these nonionic quadrupolar molecules with ethynylene (triple bond) π-spacers also in less polar solvents.


Assuntos
Benzotiazóis , Tolueno , Solventes/química , Espectrometria de Fluorescência , Acetonitrilas , Furanos
12.
F1000Res ; 9: 1088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224479

RESUMO

BACKGROUND: Mapping time-structures is a burgeoning scientific field enriching the (P4) medicine models. Local evidence in Mediterranean populations is underinvestigated. METHODS: The Censused stroke-related death events (D) in the largest East-Mediterranean port (Piraeus), during (1985-1989), when local population had diet (low fat/sugar, proteins and vegetables/fruits daily, and pure olive oil almost exclusively) and genetic homogeneity-later interrupted by the immigration into Greece in 1990; and Sunspot numbers were indexed by Wolf numbers (Rz) (1944-2004), and evaluated using Fast Fourier Analysis and Singular Spectrum Analysis in MATLAB. RESULTS: D were turned with fluctuations >35% in Rz. A non-anthropogenic 6.8 days cycle was recognized. CONCLUSIONS: This study may be taken into consideration in future public health planning and chronotherapy evaluations.


Assuntos
Dieta Mediterrânea , Acidente Vascular Cerebral , Grécia/epidemiologia , Humanos , Óleos de Plantas , Atividade Solar , Estados Unidos
13.
ACS Omega ; 3(8): 10008-10018, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459129

RESUMO

Here, we use a simple and effective method to accomplish energy level alignment and thus electron injection barrier control in organic light emitting diodes (OLEDs) with a conventional architecture based on a green emissive copolymer. In particular, a series of functionalized zinc porphyrin compounds bearing π-delocalized triazine electron withdrawing spacers for efficient intramolecular electron transfer and different terminal groups such as glycine moieties in their peripheral substitutes are employed as thin interlayers at the emissive layer/Al (cathode) interface to realize efficient electron injection/transport. The effects of spatial (i.e., assembly) configuration, molecular dipole moment and type of peripheral group termination on the optical properties and energy level tuning are investigated by steady-state and time-resolved photoluminescence spectroscopy in F8BT/porphyrin films, by photovoltage measurements in OLED devices and by surface work function measurements in Al electrodes modified with the functionalized zinc porphyrins. The performance of OLEDs is significantly improved upon using the functionalized porphyrin interlayers with the recorded luminance of the devices to reach values 1 order of magnitude higher than that of the reference diode without any electron injection/transport interlayer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA