Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Environ Sci Technol ; 55(6): 3736-3746, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33650859

RESUMO

A wide range of pharmaceuticals and endocrine disrupting compounds enter freshwaters globally. As these contaminants are transported through aquatic food webs, understanding their impacts on both aquatic and terrestrial ecosystems remains a major challenge. Here, we provide the first direct evidence of the transfer of pharmaceuticals and endocrine disruptors through the aquatic-terrestrial habitat linkage by emerging aquatic insects. We also show that the type of insect metamorphosis and feeding behavior determine the bioaccumulation patterns of these contaminants. Adult Trichoptera, an important food source for riparian predators, showed an increased body burden of pharmaceuticals and endocrine disruptors. This implies that terrestrial predators, such as spiders, birds, and bats, are exposed to mixtures of pharmaceuticals and endocrine disruptors of aquatic origin, which may impact their physiology and population dynamics. Overall, our study provides valuable insights into the bioaccumulation patterns and trophic cross-ecosystem transfer of these contaminants, from aquatic primary producers to terrestrial predators.


Assuntos
Disruptores Endócrinos , Preparações Farmacêuticas , Animais , Ecossistema , Cadeia Alimentar , Insetos
2.
Anal Bioanal Chem ; 410(17): 4165-4176, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29691601

RESUMO

During the last decades, the quality of aquatic ecosystems has been threatened by increasing levels of pollutions, caused by the discharge of man-made chemicals, both via accidental release of pollutants as well as a consequence of the constant outflow of inadequately treated wastewater effluents. For this reason, the European Union is updating its legislations with the aim of limiting the release of emerging contaminants. The Commission Implementing Decision (EU) 2015/495 published in March 2015 drafts a "Watch list" of compounds to be monitored Europe-wide. In this study, a methodology based on online solid-phase extraction (SPE) ultra-high-performance liquid chromatography coupled to a triple-quadrupole mass spectrometer (UHPLC-MS/MS) was developed for the simultaneous determination of the 17 compounds listed therein. The proposed method offers advantages over already available methods, such as versatility (all 17 compounds can be analyzed simultaneously), shorter time required for analysis, robustness, and sensitivity. The employment of online sample preparation minimized sample manipulation and reduced dramatically the sample volume needed and time required, dramatically the sample volume needed and time required, thus making the analysis fast and reliable. The method was successfully validated in surface water and influent and effluent wastewater. Limits of detection ranged from sub- to low-nanogram per liter levels, in compliance with the EU limits, with the only exception of EE2. Graphical abstract Schematic of the workflow for the analysis of the Watch list compounds.

3.
Anal Bioanal Chem ; 409(23): 5427-5440, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28573324

RESUMO

An online ultra-high-performance-liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method for detection and quantification of natural and synthetic estrogens and their conjugates in aqueous matrices was developed. Target compounds include the natural estrogen estradiol (E2) and its main metabolites estrone (E1) and estriol (E3), the synthetic estrogens ethinylestradiol (EE2) and diethylstilbestrol (DES) and their conjugates estrone 3-sulfate (E1-3S), estriol 3-sulfate (E3-3S), estradiol 17-glucuronide (E2-17G), estrone 3-glucuronide (E1-3G), and estriol 16-glucuronide (E3-16G). After pH adjustment, sample filtration and addition of internal standards (IS), water samples (5 mL) were preconcentrated on a Hypersil GOLD aQ column after which chromatographic separation was achieved on a Kinetex C18 column using methanol and water as a mobile phase. The experimental parameters, such as sample loading flow rate, elution time, the percentage of organic solvent in the aqueous-organic eluent mixture, pH, and volume of analyzed samples, were optimized in detail. The benefits of the method compared to previously published methods include minimum sample manipulation, lower detection limits, reduced total analysis time, and overall increased method accuracy and precision. Method detection limits (MDLs) are in subnanogram per liter, complying with the requirements of the EC Decision 2015/495 (Watch list) for hormones listed therein. Applicability of the developed method was confirmed by analysis of river and raw wastewater samples taken directly from urban sewerage systems before being discharged into the river. Graphical abstract Sheme of online SPE-UHPLC-MS/MS system.


Assuntos
Cromatografia Líquida/métodos , Estrogênios/análise , Rios , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/química , Estrogênios/química , Limite de Detecção
4.
MethodsX ; 12: 102589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38322135

RESUMO

Scrubber water, a waste stream generated by ships exhaust gas cleaning systems, may pose a threat when released into the marine environment due to potential contamination with polycyclic aromatic hydrocarbons (PAHs) and their alkyl derivatives (alkyl-PAHs). This study aims to develop a reliable analytical procedure combining headspace solid-phase microextraction (HS-SPME) with gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) to simultaneously separate and determine target compounds in aqueous samples. Method validation demonstrated good linearity up to 200 ng L-1 (r2> 0.996) and low limits of detection (0.33 to 1.67 ng L-1, except for naphthalene at 3.3 ng L-1). The method shows good precision (RSD<20%) and satisfactory analytical recoveries. The methodology was successfully applied to scrubber water samples collected from a container ship and the results highlight the prevalence of naphthalene, phenanthrene, and their alkyl derivatives.•Rapid and reproducible HS-SPME-GC-MS/MS method for the analysis of PAHs and alkyl-PAHs in scrubber water.•The capacity of SPME to analyze both filtered and unfiltered samples was assessed, showing that the more hydrophobic PAHs may be lost during filtration.

5.
Environ Toxicol Chem ; 43(5): 1012-1029, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415986

RESUMO

The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;43:1012-1029. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microbiota , Poluentes Químicos da Água , Microbiota/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos , Bactérias/genética , Biodegradação Ambiental , Água do Mar/microbiologia , Petróleo , Plâncton/genética
6.
Sci Total Environ ; 949: 174800, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009155

RESUMO

The occurrence of 58 pharmaceutically active compounds (PhACs) in surface water at 28 coastal and five river sites, and in two stormwater flows in Cape Town, South Africa, was investigated in winter and summer. After accounting for quality assurance and control data, 33 PhACs were considered in detail. In winter, 25 PhACs were found at one or more sites and 27 in summer. Salicylic acid was the most widespread PhAC in each season. At least one PhAC was found at each site in each survey. The largest number found at a site was 22 at Lifebox23 Beach in winter and 23 at Macassar Beach and in the Black and Diep Rivers in summer. These sites are strongly directly or indirectly affected by wastewater treatment plant discharges. The range in ΣPhAC concentrations was 41 ng L-1 to 9.3 µg L-1 in winter and 109 ng L-1 to 18.9 µg L-1 in summer. The hazard posed by PhACs was estimated using Predicted No Effect Concentrations (PNEC) from several sources. Hazard Quotients (HQs) for numerous PhACs were >1, and for several even >10, including azithromycin, cimetidine, clarithromycin, erythromycin, and ibuprofen. The highest hazards were at coastal sites strongly indirectly affected by wastewater treatment plant discharges. Azithromycin, trimethoprim, and sulfamethoxazole at some sites may have promoted antibiotic resistance in bacteria, while irbesartan at some sites might have posed a hazard to fish according to the fish plasma model. The concentrations of several PhACs at some coastal sites are higher than concentrations reported in estuarine, coastal, and marine waters in other parts of the world.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , África do Sul , Poluentes Químicos da Água/análise , Preparações Farmacêuticas/análise , Água do Mar/química , Rios/química , Águas Residuárias/química , Estações do Ano
7.
Anal Bioanal Chem ; 405(18): 5859-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23579471

RESUMO

This paper describes the development and application of a multi-residue chiral liquid chromatography coupled with tandem mass spectrometry method for simultaneous enantiomeric profiling of 18 chiral pharmaceuticals and their active metabolites (belonging to several therapeutic classes including analgesics, psychiatric drugs, antibiotics, cardiovascular drugs and ß-agonists) in surface water and wastewater. To the authors' knowledge, this is the first time an enantiomeric method including such a high number of pharmaceuticals and their metabolites has been reported. Some of the pharmaceuticals have never been studied before in environmental matrices. Among them are timolol, betaxolol, carazolol and clenbuterol. A monitoring programme of the Guadalquivir River basin (South Spain), including 24 sampling sites and five wastewater treatment plants along the basin, revealed that enantiomeric composition of studied pharmaceuticals is dependent on compound and sampling site. Several compounds such as ibuprofen, atenolol, sotalol and metoprolol were frequently found as racemic mixtures. On the other hand, fluoxetine, propranolol and albuterol were found to be enriched with one enantiomer. Such an outcome might be of significant environmental relevance as two enantiomers of the same chiral compound might reveal different ecotoxicity. For example, propranolol was enriched with S(-)-enantiomer, which is known to be more toxic to Pimephales promelas than R(+)-propranolol. Fluoxetine was found to be enriched with S(+)-enantiomer, which is more toxic to P. promelas than R(-)-fluoxetine.


Assuntos
Cromatografia Líquida/métodos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Rios/química , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Atenolol/análise , Monitoramento Ambiental/métodos , Fluoxetina/análise , Metoprolol/análise , Preparações Farmacêuticas/química , Propanolaminas/análise , Propranolol/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espanha , Estereoisomerismo , Poluentes Químicos da Água/química
8.
Sci Total Environ ; 877: 162818, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36914121

RESUMO

Freshwater ecosystems are characterised by the co-occurrence of stressors that simultaneously affect the biota. Among these, flow intermittency and chemical pollution severely impair the diversity and functioning of streambed bacterial communities. Using an artificial streams mesocosm facility, this study examined how desiccation and pollution caused by emerging contaminants affect the composition of stream biofilm bacterial communities, their metabolic profiles, and interactions with their environment. Through an integrative analysis of the composition of biofilm communities, characterization of their metabolome and composition of the dissolved organic matter, we found strong genotype-to-phenotype interconnections. The strongest correlation was found between the composition and metabolism of the bacterial community, both of which were influenced by incubation time and desiccation. Unexpectedly, no effect of the emerging contaminants was observed, which was due to the low concentration of the emerging contaminants and the dominant impact of desiccation. However, biofilm bacterial communities modified the chemical composition of their environment under the effect of pollution. Considering the tentatively identified classes of metabolites, we hypothesised that the biofilm response to desiccation was mainly intracellular while the response to chemical pollution was extracellular. The present study demonstrates that metabolite and dissolved organic matter profiling may be effectively integrated with compositional analysis of stream biofilm communities to yield a more complete picture of changes in response to stressors.


Assuntos
Ecossistema , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Matéria Orgânica Dissolvida , Bactérias/genética , Rios/química , Biofilmes
9.
Sci Total Environ ; 857(Pt 1): 159202, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208750

RESUMO

This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to µg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.


Assuntos
Antibacterianos , Nascentes Naturais , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Escherichia coli/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Tetraciclinas/análise , Sulfonamidas , Água , China
10.
Mar Pollut Bull ; 190: 114846, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965268

RESUMO

Exhaust Gas Cleaning Systems (EGCS), operating in open-loop mode, continuously release acidic effluents (scrubber waters) to marine waters. Furthermore, scrubber waters contain high concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs, potentially affecting the plankton in the receiving waters. Toxicity tests evidenced significant impairments in planktonic indicators after acute, early-life stage, and long-term exposures to scrubber water produced by a vessel operating with high sulphur fuel. Acute effects on bacterial bioluminescence (Aliivibrio fischeri), algal growth (Phaeodactylum tricornutum, Dunaliella tertiolecta), and copepod survival (Acartia tonsa) were evident at 10 % and 20 % scrubber water, while larval development in mussels (Mytilus galloprovincialis) showed a 50 % reduction at ∼5 % scrubber water. Conversely, larval development and reproductive success of A. tonsa were severely affected at scrubber water concentrations ≤1.1 %, indicating the risk of severe impacts on copepod populations which in turn may result in impairment of the whole food web.


Assuntos
Copépodes , Diatomáceas , Mytilus , Poluentes Químicos da Água , Animais , Plâncton , Biomarcadores Ambientais , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 46(21): 12012-20, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23030544

RESUMO

The use of sludge (biosolids) in land application may contribute to the spread of organic micropollutants as wastewater treatments do not completely remove these compounds. Therefore, the development of alternative strategies for sludge treatment is a matter of recent concern. The elimination of pharmaceuticals at pre-existent concentrations from sewage sludge was assessed, for the first time, in nonsterile biopiles by means of fungal bioaugmentation with Trametes versicolor (BTV-systems) and compared with the effect of autochthonous microbiota (NB-systems). The competition between the autochthonous fungal/bacterial communities and T. versicolor was studied using denaturing gradient gel electrophoresis (DGGE) and the cloning/sequencing approach. An inhibitory effect exerted by T. versicolor over bacterial populations was suggested. However, after 21 days, T. versicolor was no longer the main taxon in the fungal communities. The elimination profiles revealed an enhanced removal of atorvastatin-diclofenac-hydrochlorothiazide (during the whole treatment) and ranitidine-fenofibrate (at short periods) in the BTV biopiles in respect to NB biopiles, coincident with the presence of the fungus. For ibuprofen-clarithromycin-furosemide, the elimination profiles were similar irrespective of the system, and with carbamazepine no significant degradation was obtained. The results suggest that a fungal treatment with T. versicolor could be a promising process for the remediation of some pharmaceuticals in complex matrices such as biosolids.


Assuntos
Preparações Farmacêuticas/metabolismo , Esgotos/microbiologia , Trametes/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Ergosterol/metabolismo , Lacase/metabolismo , Preparações Farmacêuticas/análise , Esgotos/análise , Poluentes Químicos da Água/análise
13.
Chemosphere ; 294: 133606, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35033511

RESUMO

Concern of toxic compounds and their, potentially more harmful degradation products, present in aquatic environment alarmed scientific community and research on the development of novel technologies for wastewater treatment had become of great interest. Up to this date, many papers pointed out the challenges and limitations of conventional wastewater treatment and of some advanced oxidation processes. Advanced technologies based on the use of non-equilibrium or non-thermal plasma had been recognized as a possible solution for, not only degradation, but for complete removal of recalcitrant organic micropollutants. While previous review papers have been focused on plasma physics and chemistry of different types of discharges for few organic micropollutants, this paper brings comprehensive review of current knowledge on the chemistry and degradation pathways by using different non-thermal plasma types for several micropollutants' classes, such as pharmaceuticals, perfluorinated compounds, pesticides, phenols and dyes and points out some major research gaps.


Assuntos
Praguicidas , Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Pressão Atmosférica , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 845: 157309, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839888

RESUMO

Wastewater-based epidemiology (WBE) can be a useful complementary approach to assess human exposure to potentially harmful chemicals, including those from personal care and household products. In this work, a fully automated multiresidue method, based on on-line solid-phase extraction liquid chromatography - tandem mass spectrometry, was developed for the determination of 27 biomarkers of human exposure to selected chemicals from personal care and household products, including parabens, UV filters, phthalates and alternative plasticizers, phosphorous flame retardants/plasticizers (PFRs), and bisphenols. These biomarkers include both the parent compounds and their human metabolites. In addition, two oxidative stress biomarkers, 8-epi-prostaglandin F2α and 4-hydroxy nonenal mercapturic acid, were also considered in the study. The method was carefully optimized to tackle the challenges of analyzing compounds with different physico-chemical properties in a highly complex raw wastewater matrix, while model experiments were performed to investigate filtration losses and analyte stability. The applicability of the developed method was tested by analyzing raw wastewater from four European cities: Antwerp, Brussels (Belgium), Girona (Spain), and Zagreb (Croatia). Twenty-one biomarkers (10 parent compounds and 11 metabolites) were detected in all analyzed wastewater samples. The parent compounds with the highest mass loads were PFRs, parabens, and bisphenol S, while phthalate monoesters were the most prominent metabolites. The mass loads of most compounds were quite similar across cities, but geographic differences were observed for some biomarkers, such as metabolites of phthalates and alternative plasticizers. Exposure was then assessed for seven substances for which quantitative urinary excretion data are known. Our results indicate that safe reference values were exceeded for several contaminants, including butylated phthalates, bisphenol A, and tris(2-butoxyethyl) phosphate, particularly for toddlers. With this relatively simple method, which requires less sample manipulation, it is possible to promptly identify and monitor exposure to harmful chemicals at the population level using the WBE approach.


Assuntos
Plastificantes , Águas Residuárias , Biomarcadores/urina , Cromatografia Líquida , Produtos Domésticos/análise , Humanos , Parabenos/análise , Plastificantes/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Águas Residuárias/química
15.
Sci Total Environ ; 838(Pt 2): 156208, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35618119

RESUMO

Environmental fate of emerging contaminants such as pharmaceuticals and endocrine disrupting compounds at the aquatic terrestrial boundary are largely unexplored. Aquatic insects connect aquatic and terrestrial food webs as their life cycle includes aquatic and terrestrial life stages, thus they represent an important inter-habitat linkage not only for energy and nutrient flow, but also for contaminant transfer to terrestrial environments. We measured the concentrations of pharmaceuticals and endocrine disrupting compounds in the larval and adult tissues (last larval stages and teneral adults) of five Odonata species sampled in a wastewater-impacted river, in order to examine their bioaccumulation and bioamplification at different taxonomic levels. Twenty different compounds were bioaccumulated in insect tissues, with majority having higher concentrations (up to 90% higher) in aquatic larvae compared to terrestrial adults (reaching 88 ng/g for 1H-benzotriazole). However, increased concentration in adults was observed for seven compounds in at least one suborder (41% of the accumulated), confirming contaminants bioamplification across the metamorphosis. Both, bioaccumulation and bioamplification differed at various taxa levels; the order (Odonata), suborder (Anisoptera and Zygoptera) and species level. Highest variability was observed between Anisoptera and Zygoptera, due to the underlying differences in their ecology. Generally, Zygoptera had higher concentrations of contaminants in both larvae and adults. Additionally, we aimed at predicting effects of contaminant properties on bioaccumulation and bioamplification patterns using the commonly used physicochemical and pharmacokinetic descriptors on both order and suborder levels, however, neither of the two processes could be consistently predicted with simple linear models. Our study highlights the importance of taxonomy in studies aiming at advancing the understanding of contaminant exchange between aquatic and terrestrial food webs, as higher taxonomic categories include ecologically diverse groups, whose contribution to "the dark side of subsidies" could substantially differ.


Assuntos
Disruptores Endócrinos , Odonatos , Animais , Bioacumulação , Cadeia Alimentar , Insetos , Preparações Farmacêuticas , Rios/química
16.
Sci Total Environ ; 822: 153477, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35093343

RESUMO

In the present paper, the mesophilic (35 °C) and thermophilic (55 °C) biomethanization of poultry and cattle manures were investigated using biochemical methane potential (BMP) tests. Specific methane production (SMP), 24 pharmaceutical compounds (PhACs), and five antibiotic resistance genes (ARGs) (blaKPC, ermB, qnrS, sul1 and tetW) together with the microbial community were analyzed. Mesophilic BMP tests resulted in the highest SMP when poultry manure was used (285.5 mL CH4/g VSS with poultry vs 239.6 mL CH4/g VSS with cattle manure) while thermophilic temperatures led to the highest SMP with cattle manure (231.2 mL CH4/g VSS with poultry vs 238.0 mL CH4/g VSS with cattle manure). Higher removals of veterinary pharmaceuticals were detected at 55 °C with both manures indicating that thermophilic digestion is better suited for the removal of these compounds. Tylosin, tilmicosin, chlortetracycline, and sulfamethoxazole presented removals higher than 50%, being the first two completely removed under mesophilic and thermophilic conditions. When comparing the relative abundance of ARGs at the end of each treatment, the most significant removal was found for qnrS which was not detected after the anaerobic treatment. The remaining ARGs did not suffer significant changes. Finally, microbial composition analysis showed that temperature affected the final microbial population more than the microorganisms present in the substrate or inoculum.


Assuntos
Esterco , Drogas Veterinárias , Anaerobiose , Animais , Antibacterianos/farmacologia , Bovinos , Resistência Microbiana a Medicamentos/genética , Esterco/análise , Aves Domésticas
17.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500951

RESUMO

Fe2O3/TiO2 nanocomposites were fabricated via a facile impregnation/calcination technique employing different amounts iron (III) nitrate onto commercial TiO2 (P25 Aeroxide). The as-prepared Fe2O3/TiO2 nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDXS), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET), electron impedance spectroscopy (EIS), photoluminescence spectroscopy (PL), and diffuse reflectance spectroscopy (DRS). As a result, 5% (w/w) Fe2O3/TiO2 achieved the highest photocatalytic activity in the slurry system and was successfully immobilized on glass support. Photocatalytic activity under visible-light irradiation was assessed by treating pharmaceutical amoxicillin (AMX) in the presence and absence of additional oxidants: hydrogen peroxide (H2O2) and persulfate salts (PS). The influence of pH and PS concentration on AMX conversion rate was established by means of statistical planning and response surface modeling. Results revealed optimum conditions of [S2O82-] = 1.873 mM and pH = 4.808; these were also utilized in presence of H2O2 instead of PS in long-term tests. The fastest AMX conversion possessing a zero-order rate constant of 1.51 × 10-7 M·min-1 was achieved with the photocatalysis + PS system. The AMX conversion pathway was established, and the evolution/conversion of formed intermediates was correlated with the changes in toxicity toward Vibrio fischeri. Reactive oxygen species (ROS) scavenging was also utilized to investigate the AMX conversion mechanism, revealing the major contribution of photogenerated h+ in all processes.

18.
Sci Total Environ ; 848: 157124, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792263

RESUMO

Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Ecossistema , Ozônio/análise , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Água/análise , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 760: 143881, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341619

RESUMO

High resolution mass spectrometry (HRMS) was used to investigate the dissolved organic matter (DOM) profile of a reclamation water trial performed in the Llobregat River (Spain) during summer 2019. 23 water samples (including tertiary effluents, surface river and drinking water), taken during five sampling campaigns, were analyzed and their van Krevelen diagrams were compared. The reclaimed water fingerprint was substantially different from the natural profile of the river, showing a higher number of heteroatomic signals (i.e. CHON, CHOS and CHONS) and the presence of high-intensity S-containing features. As a result, reclaimed water discharge introduced substantial changes in the signature of the lignin-like and soot-like compositional-spaces of the river DOM fingerprint. However, the effect on the drinking water fingerprint was, ultimately, very limited. Only a limited number of features (up to 34) were detected as exclusively emitted with the reclaimed water. During the second phase of the trial, the tertiary effluent was chlorinated for disinfection purposes. This process triggered the unexpected formation of a myriad of new features along the Llobregat River. Notably, 109 brominated/chlorinated features were detected, probably generated as a consequence of the photochemical decay of the emitted chloramines and their free-radical reaction with DOM, and three of them persisted in the final drinking water. The formation of halogenated species in situ in the Llobregat River entails uncertainty at ecological and water treatment levels and should be studied carefully to fully disclose the risks associated to wastewater effluent disinfection.

20.
Environ Pollut ; 289: 117927, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426209

RESUMO

The occurrence of veterinary antibiotics and hydro-chemical parameters in eleven natural springs in a livestock production area is evaluated, jointly with the characterization of their DOM fingerprint by Orbitrap HRMS. Tetracycline and sulfonamide antibiotics were ubiquitous in all sites, and they were detected at low ng L-1 concentrations, except for doxycycline, that was present at µg L-1 in one location. DOM analysis revealed that most molecular formulas were CHO compounds (49 %-68 %), with a remarkable percentage containing nitrogen and sulphur (16 %-23 % and 11 %-24 %, respectively). Major DOM components were phenolic and highly unsaturated compounds (~90 %), typical for soil-derived organic matter, while approximately 11 % were unsaturated aliphatic, suggesting that springs may be susceptible to anthropogenic contamination sources. Comparing the DOM fingerprint among sites, the spring showing the most different profile was the one with surface water interaction and characterized by having lower CHO and higher CHOS formulas and aliphatic compounds. Correlations between antibiotics and DOM showed that tetracyclines positively correlate with unsaturated oxygen-rich substances, while sulfonamides relate with aliphatic and unsaturated oxygen-poor compounds. This indicates that the fate of different antibiotics will be controlled by the type of DOM present in groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Monitoramento Ambiental , Solo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA