Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 19(9): 13486-97, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25255751

RESUMO

Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•--CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments.


Assuntos
Acetoacetatos/química , Deutério , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Prótons , Solubilidade
2.
Drug Discov Today ; 25(4): 718-730, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31758914

RESUMO

The delivery of noncoding (nc)RNA to target cancer stem cells and metastatic tumors has shown many positive outcomes, resulting in improved and more efficient treatment strategies. The success of therapeutic RNA depends solely on passing cellular barriers to reach the target site, where it binds to the mRNA of the interest. By 2018, 20 clinical trials had been initiated, most focusing on cancer and diabetes, with some progressing to Phase II clinical trials testing the safety and efficacy of small interfering (si)RNA. Many challenges limit RNA interference (RNAi) and miRNA usage in vivo; therefore, various approaches have been developed to promote ncRNA efficiency and stability. In this review, we focus on targeting the tumor microenvironment (TME) via the modification of delivery systems utilizing nanotechnology-based delivery approaches.


Assuntos
Neoplasias/terapia , RNA Interferente Pequeno/administração & dosagem , RNA não Traduzido/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Humanos , Nanotecnologia , Neoplasias/genética , Células-Tronco Neoplásicas , Microambiente Tumoral
3.
Cancers (Basel) ; 11(2)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781490

RESUMO

Targeting immune checkpoint molecules such as programmed death ligand-1 (PDL1) is an emerging strategy for anti-cancer therapy. However, transient expression of PDL1 and difficulty in tumor stroma penetration has limited the utility of anti-PDL1 therapy. To overcome these limitations, we report a new conjugate between the clinically approved PDL1 antibody (PDL1 AB) and drug Doxorubicin (Dox), named PDL1-Dox. We conjugated PDL1-Dox through a hydrazone linker containing a polyethylene glycol (PEG) spacer, which allows it to dissociate in a tumor environment and improves solubility. The purpose of using Dox is to disrupt the tumor extracellular environment so that PDL-1 antibody can penetrate the tumor core. PDL1-Dox demonstrates significant cell killing, disruption of tumor spheroid and induction of apoptosis in a breast cancer cell line. Significant release of IFN-γ suggests PDL1-Dox can upmodulate T cell activation. Optical imaging of dye conjugate supports the selective tumor targeting ability and core penetration of the construct.

4.
J Phys Chem C Nanomater Interfaces ; 121(36): 20039-20050, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28936278

RESUMO

In this work, we tested our hypothesis that surface chemistry and antioxidant properties of cerium nanoparticles (CNPs) are affected by presence of counterions. We first employed various precursor cerium (III) (Ce(III)) salts with different counterions (acetate, nitrate, chloride, sulfate) to synthesize CNPs following the same wet chemical methodology. Electron spin resonance (ESR) studies provided evidence for the formation of radicals from counterions (e.g., NO3•2- from reduction of NO3- in CNPs synthesized from Ce(III) nitrate). Physicochemical properties of these CNPs, e.g., dispersion stability, hydrodynamic size, signature surface chemistry, SOD-mimetic activity, and oxidation potentials were found to be significantly affected by the anions of the precursor salts. CNPs synthesized from Ce(III) nitrate and Ce(III) chloride exhibited higher extent of SOD-mimetic activities. Therefore, these CNPs were studied extensively employing in-situ UV-Visible spectroelectrochemistry and changing the counterion concentrations affected the oxidation potentials of these CNPs. Thus, the physicochemical and antioxidant properties of CNPs can be modulated by anions of the precursor. Furthermore, our ESR studies present evidence of the formation of guanine cation radical (G•+) in 5'-dGMP via UV-photoionization at 77 K in the presence of CNPs synthesized from Ce(III) nitrate and chloride and CNPs act as the scavenger of radiation-produced electrons.

5.
Chem Commun (Camb) ; 50(93): 14605-8, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25306924

RESUMO

The mechanism of radiation-induced frank strand break formation in irradiated 5-bromo-2'-deoxyuridine (BrdU)-labelled DNA is still unclear despite the proven radiosensitizing properties of BrdU. Combination of ESR spectroscopy and quantum chemical modelling points to a simple reaction between the uridine-5-yl radical and water molecules that produces the genotoxic hydroxyl radical.


Assuntos
Desoxiuridina/química , Radicais Livres/química , Radical Hidroxila/química , Teoria Quântica , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA