Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biotechnol Bioeng ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014536

RESUMO

In vitro transcription (IVT) reaction is an RNA polymerase-catalyzed production of messenger RNA (mRNA) from DNA template, and the unit operation with highest cost of goods in the mRNA drug substance production process. To decrease the cost of mRNA production, reagents should be optimally utilized. Due to the catalytic, multicomponent nature of the IVT reaction, optimization is a multi-factorial problem, ideally suited to design-of-experiment approach for optimization and identification of design space. We derived a data-driven model of the IVT reaction and explored factors that drive process yield (in g/L), including impact of nucleoside triphosphate (NTP) concentration and Mg:NTP ratio on reaction yield and how to optimize the main cost drivers RNA polymerase and DNA template, while minimizing dsRNA formation, a critical quality attribute in mRNA products. We report a methodological approach to derive an optimum reaction design, with which cost efficiency of the reaction was improved by 44%. We demonstrate the validity of the model on mRNA construct of different lengths. Finally, we maximized the yield of the IVT reaction to 24.9 ± 1.5 g/L in batch, thus doubling the highest ever reported IVT yield.

2.
PLoS Genet ; 16(4): e1008642, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310940

RESUMO

Undifferentiated embryonal sarcoma of the liver (UESL) is a rare and aggressive malignancy. Though the molecular underpinnings of this cancer have been largely unexplored, recurrent chromosomal breakpoints affecting a noncoding region on chr19q13, which includes the chromosome 19 microRNA cluster (C19MC), have been reported in several cases. We performed comprehensive molecular profiling on samples from 14 patients diagnosed with UESL. Congruent with prior reports, we identified structural variants in chr19q13 in 10 of 13 evaluable tumors. From whole transcriptome sequencing, we observed striking expressional activity of the entire C19MC region. Concordantly, in 7 of 7 samples undergoing miRNAseq, we observed hyperexpression of the miRNAs within this cluster to levels >100 fold compared to matched normal tissue or a non-C19MC amplified cancer cell line. Concurrent TP53 mutation or copy number loss was identified in all evaluable tumors with evidence of C19MC overexpression. We find that C19MC miRNAs exhibit significant negative correlation to TP53 regulatory miRNAs and K-Ras regulatory miRNAs. Using RNA-seq we identified that pathways relevant to cellular differentiation as well as mRNA translation machinery are transcriptionally enriched in UESL. In summary, utilizing a combination of next-generation sequencing and high-density arrays we identify the combination of C19MC hyperexpression via chromosomal structural event with TP53 mutation or loss as highly recurrent genomic features of UESL.


Assuntos
Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 19/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , Mutação , Neoplasias Embrionárias de Células Germinativas/genética , Sarcoma/genética , Proteína Supressora de Tumor p53/genética , Aneuploidia , Criança , Pré-Escolar , Feminino , Genes ras/genética , Instabilidade Genômica/genética , Humanos , Lactente , Masculino , Sítio de Iniciação de Transcrição , Proteína Supressora de Tumor p53/deficiência , Regulação para Cima
3.
Chemistry ; 23(31): 7444-7447, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402066

RESUMO

Visible-light photoredox catalysis has been utilized in a new multicomponent reaction forming ß-functionalized δ-diketones under mild conditions in an operationally convenient manner. Single-electron reduction of in situ generated carboxylic acid derivatives forms acyl radicals that react further via 1,2-acylalkylation of olefins in an intermolecular, three-components cascade reaction, giving valuable synthetic entities from readily available starting materials. A diverse set of substrates has been used, demonstrating robust methodology with broad substrate scope.

4.
Chemphyschem ; 16(6): 1286-94, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25694168

RESUMO

We created environmentally friendly low-voltage, ion-modulated transistors (IMTs) that can be fabricated successfully on a paper substrate. A range of ionic liquids (ILs) based on choline chloride (ChoCl) were used as the electrolytic layer in the IMTs. Different organic compounds were mixed with ChoCl to create solution-processable deep eutectic mixtures that are liquid or semiliquid at room temperature. In the final, solid version of the IMT, the ILs are also solidified by using a commercial binder to create printable transistor structures The semiconductor layer in the IMT is also substituted with a blend of the original semiconductor and a biodegradable polymer insulator. This reduces the amount of expensive and potentially harmful semiconductor used, and it also provides increased transistor performance, especially increasing the device switching speed. These environmentally friendly IMTs are then used to create ring oscillators, logic gates, and memories on paper.

5.
PLoS Genet ; 8(2): e1002505, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383892

RESUMO

Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (D(ABD-GLU) = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response-related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS-associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10(-4)). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS-related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10(-4)); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10(-4)) and BMI-adjusted waist-to-hip ratio (P = 2.4×10(-4)). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.


Assuntos
Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Síndrome Metabólica/genética , Índice de Massa Corporal , Quimiocinas/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Síndrome Metabólica/patologia , Especificidade de Órgãos , Fenótipo , Locos de Características Quantitativas
6.
Nanotechnology ; 25(9): 094003, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24521872

RESUMO

A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.

7.
Nanotechnology ; 25(9): 094009, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24522116

RESUMO

In this study, two different supramolecular recognition architectures for impedimetric detection of DNA hybridization have been formed on disposable paper-supported inkjet-printed gold electrodes. The gold electrodes were fabricated using a gold nanoparticle based ink. The first recognition architecture consists of subsequent layers of biotinylated self-assembly monolayer (SAM), streptavidin and biotinylated DNA probe. The other recognition architecture is constructed by immobilization of thiol-functionalized DNA probe (HS-DNA) and subsequent backfill with 11-mercapto-1-undecanol (MUOH) SAM. The binding capacity and selectivity of the recognition architectures were examined by surface plasmon resonance (SPR) measurements. SPR results showed that the HS-DNA/MUOH system had a higher binding capacity for the complementary DNA target. Electrochemical impedance spectroscopy (EIS) measurements showed that the hybridization can be detected with impedimetric spectroscopy in picomol range for both systems. EIS signal indicated a good selectivity for both recognition architectures, whereas SPR showed very high unspecific binding for the HS-DNA/MUOH system. The factors affecting the impedance signal were interpreted in terms of the complexity of the supramolecular architecture. The more complex architecture acts as a less ideal capacitive sensor and the impedance signal is dominated by the resistive elements.


Assuntos
DNA/química , DNA/metabolismo , Eletrodos , Ouro/química , Hibridização de Ácido Nucleico/métodos , Sondas de DNA , Espectroscopia Dielétrica/instrumentação , Nanopartículas Metálicas/química , Papel , Impressão
8.
Sci Rep ; 13(1): 20125, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978271

RESUMO

Osteosarcoma is the most common bone sarcoma in children and young adults. While universally delivered, chemotherapy only benefits roughly half of patients with localized disease. Increasingly, intratumoral heterogeneity is recognized as a source of therapeutic resistance. In this study, we develop and evaluate an in vitro model of osteosarcoma heterogeneity based on phenotype and genotype. Cancer cell populations vary in their environment-specific growth rates and in their sensitivity to chemotherapy. We present the genotypic and phenotypic characterization of an osteosarcoma cell line panel with a focus on co-cultures of the most phenotypically divergent cell lines, 143B and SAOS2. Modest environmental (pH, glutamine) or chemical perturbations dramatically shift the success and composition of cell lines. We demonstrate that in nutrient rich culture conditions 143B outcompetes SAOS2. But, under nutrient deprivation or conventional chemotherapy, SAOS2 growth can be favored in spheroids. Importantly, when the simplest heterogeneity state is evaluated, a two-cell line coculture, perturbations that affect the faster growing cell line have only a modest effect on final spheroid size. Thus the only evaluated therapies to eliminate the spheroids were by switching therapies from a first strike to a second strike. This extensively characterized, widely available system, can be modeled and scaled to allow for improved strategies to anticipate resistance in osteosarcoma due to heterogeneity.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adulto Jovem , Criança , Humanos , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Técnicas de Cocultura , Fenótipo
9.
BMC Genomics ; 13: 97, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22424303

RESUMO

BACKGROUND: In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s) and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL) complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. RESULTS: We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs) and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. CONCLUSIONS: Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos/genética , Caracteres Sexuais , Cromossomo X/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Variação Genética , Histona Acetiltransferases/metabolismo , Íntrons/genética , Masculino , Análise Multivariada , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico , Especificidade por Substrato
10.
PLoS Pathog ; 6: e1000979, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617178

RESUMO

Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7 x 10(-8), OR = 0.31, 95% CI = 0.20-0.48, and HLA-DQA1 rs1071630, case-control P = 4.9 x 10(-14), OR = 0.43, 95% CI = 0.35-0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.


Assuntos
Predisposição Genética para Doença/genética , Antígenos HLA-DR/genética , Hanseníase/genética , Receptor 1 Toll-Like/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Cadeias alfa de HLA-DQ , Cadeias HLA-DRB1 , Humanos , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Receptor 1 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA