RESUMO
Recent developments in the immuno-oncology field strongly support a role for the immune system in both the prevention and progression of melanoma. Melanoma is a highly immunogenic cancer, including its ability to induce tumour antigen-specific B cell and antibody responses through largely unknown mechanisms. This review considers likely hypothetical mechanisms by which anti-tumour surveillance detects pre-cancerous cells and by which immune (including B cell and antibody) responses may be elicited during malignancy. The review further considers potential pro- and anti-tumour functions of B cells and antibodies (including tertiary lymphoid structures) in both the tumour microenvironment and in circulation. Although the vast majority of studies have focused on T cells, recent evidence highlights the important roles of B cells in response to malignancy. B cells and antibodies are also discussed in the context of their potential utility as clinical biomarkers for various applications (as diagnostic, prognostic, therapeutic efficacy, and toxicity proxies), with a particular focus on protein microarray-based antibody detection and quantitation. Although the role of B cells in melanoma is incompletely understood, the measurement of circulating tumour-specific antibodies represents a promising avenue in the search for melanoma-relevant biomarkers.
Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Sistema Imunitário , Melanoma/imunologia , Anticorpos/imunologia , Humanos , Melanoma/terapiaRESUMO
Background: Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. Methods: We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. Results: MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. Conclusions: MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS.
Assuntos
Colagenases/metabolismo , Infecções por HIV/complicações , Síndrome Inflamatória da Reconstituição Imune , Tuberculose , Adulto , Estudos Transversais , Feminino , Infecções por HIV/epidemiologia , HIV-1 , Humanos , Síndrome Inflamatória da Reconstituição Imune/complicações , Síndrome Inflamatória da Reconstituição Imune/epidemiologia , Síndrome Inflamatória da Reconstituição Imune/metabolismo , Masculino , Metaloproteinase 8 da Matriz/metabolismo , Fragmentos de Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Estudos Prospectivos , África do Sul , Tuberculose/complicações , Tuberculose/epidemiologia , Tuberculose/metabolismo , Adulto JovemRESUMO
Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) occurs in 8-54% of South African patients undergoing treatment for tuberculosis/human immunodeficiency virus co-infection. Improved TB-IRIS molecular pathogenesis understanding would enhance risk stratification, diagnosis, prognostication, and treatment. We assessed how TB-IRIS status and dexamethasone influence leukocyte proteomic responses to Mycobacterium tuberculosis (Mtb). Patient blood was obtained three weeks post-anti-retroviral therapy initiation. Isolated mononuclear cells were stimulated ex vivo with heat-killed Mtb in the presence/absence of dexamethasone. Mass spectrometry-based proteomic comparison of TB-IRIS and non-IRIS patient-derived cells facilitated generation of hypotheses regarding pathogenesis. Few represented TB-IRIS-group immune-related pathways achieved significant activation, with relative under-utilisation of "inter-cellular interaction" and "Fcγ receptor-mediated phagocytosis" (but a tendency towards apoptosis-related) pathways. Dexamethasone facilitated significant activation of innate-related pathways. Differentially-expressed non-IRIS-group proteins suggest focused and co-ordinated immunological pathways, regardless of dexamethasone status. Findings suggest a relative deficit in TB-IRIS-group responses to and clearance of Mtb antigens, ameliorated by dexamethasone.
Assuntos
Dexametasona/uso terapêutico , Síndrome Inflamatória da Reconstituição Imune/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Proteoma/metabolismo , Tuberculose/tratamento farmacológico , Antirretrovirais/uso terapêutico , Cromatografia Líquida , Coinfecção/tratamento farmacológico , Feminino , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Humanos , Leucócitos Mononucleares/microbiologia , Masculino , Mycobacterium tuberculosis , Estudos Prospectivos , Proteômica , África do Sul , Espectrometria de Massas em TandemRESUMO
Introduction: Autoimmune diseases are heterogeneous and often lack specific or sensitive diagnostic tests. Increased percentages of CD4+CXCR5+PD1+ circulating T follicular helper (cTfh) cells and skewed distributions of cTfh subtypes have been associated with autoimmunity. However, cTfh cell percentages can normalize with immunomodulatory treatment despite persistent disease activity, indicating the need for identifying additional cellular and/or serologic features correlating with autoimmunity. Methods: The cohort included 50 controls and 56 patients with autoimmune cytopenias, gastrointestinal, pulmonary, and/or neurologic autoimmune disease. Flow cytometry was used to measure CD4+CXCR5+ T cell subsets expressing the chemokine receptors CXCR3 and/or CCR6: CXCR3+CCR6- Type 1, CXCR3-CCR6- Type 2, CXCR3+CCR6+ Type 1/17, and CXCR3- CCR6+ Type 17 T cells. IgG and IgA autoantibodies were quantified using a microarray featuring 1616 full-length, conformationally intact protein antigens. The 97.5th percentile in the control cohort defined normal limits for T cell subset percentages and total number (burden) of autoantibodies. Results: This study focused on CD4+CXCR5+ T cells because CXCR5 upregulation occurs after cognate T-B cell interactions characteristic of autoimmune diseases. We refer to these cells as circulating T follicular memory (cTfm) cells to acknowledge the dynamic nature of antigen-experienced CXCR5+ T cells, which encompass progenitors of cTfh or Tfh cells as well as early effector memory T cells that have not yet lost CXCR5. Compared to controls, 57.1% of patients had increased CXCR5+CXCR3+CCR6+ cTfm1/17 and 25% had increased CXCR5+CXCR3-CCR6+ cTfm17 cell percentages. Patients had significantly more diverse IgG and IgA autoantibodies than controls and 44.6% had an increased burden of autoantibodies of either isotype. Unsupervised autoantibody clustering identified three clusters of patients with IgG autoantibody profiles distinct from those of controls, enriched for patients with active autoimmunity and monogenic diseases. An increased percentage of cTfm17 cells was most closely associated with an increased burden of high-titer IgG and IgA autoantibodies. A composite measure integrating increased cTfm1/17, cTfm17, and high-titer IgG and/or IgA autoantibodies had 91.1% sensitivity and 90.9% specificity for identifying patients with autoimmunity. Percentages of cTfm1/17 and cTfm17 percentages and numbers of high-titer autoantibodies in patients receiving immunomodulatory treatment did not differ from those in untreated patients, thus suggesting that measurements of cTfm can complement measurements of other cellular markers affected by treatment. Conclusions: This study highlights two new approaches for assessing autoimmunity: measuring CD4+CXCR5+ cTfm subsets as well as total burden of autoantibodies. Our findings suggest that these approaches are particularly relevant to patients with rare autoimmune disorders for whom target antigens and prognosis are often unknown.