Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Intern Med ; 287(6): 645-664, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32012363

RESUMO

Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.


Assuntos
Doenças Mitocondriais/genética , Membranas Mitocondriais/metabolismo , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação/genética
2.
Trends Cell Biol ; 5(5): 207-12, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-14731451

RESUMO

The 70 kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that are best known for their participation in protein folding. However, evidence is accumulating that Hsp70s perform several other cellular functions in cooperation with specific soluble or membrane-bound partner proteins. While the basic function of Hsp70s is explained by their ability to bind unfolded polypeptide segments, the partner proteins appear to customize them for specific roles such as involvement in protein traffic and folding, translocation of preproteins across membranes, and gene regulation.

3.
J Cell Biol ; 123(1): 119-26, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8408192

RESUMO

To test the hypothesis that 70-kD mitochondrial heat shock protein (mt-hsp70) has a dual role in membrane translocation of preproteins we screened preproteins in an attempt to find examples which required either only the unfoldase or only the translocase function of mt-hsp70. We found that a series of fusion proteins containing amino-terminal portions of the intermembrane space protein cytochrome b2 (cyt. b2) fused to dihydrofolate reductase (DHFR) were differentially imported into mitochondria containing mutant hsp70s. A fusion protein between the amino-terminal 167 residues of the precursor of cyt. b2 and DHFR was efficiently transported into mitochondria independently of both hsp70 functions. When the length of the cyt. b2 portion was increased and included the heme binding domain, the fusion protein became dependent on the unfoldase function of mt-hsp70, presumably caused by a conformational restriction of the heme-bound preprotein. In the absence of heme the noncovalent heme binding domain in the longer fusion proteins no longer conferred a dependence on the unfoldase function. When the cyt. b2 portion of the fusion protein was less than 167 residues, its import was still independent of mt-hsp70 function; however, deletion of the intermembrane space sorting signal resulted in preproteins that ended up in the matrix of wild-type mitochondria and whose translocation was strictly dependent on the translocase function of mt-hsp70. These findings provide strong evidence for a dual role of mt-hsp70 in membrane translocation and indicate that preproteins with an intermembrane space sorting signal can be correctly imported even in mutants with severely impaired hsp70 function.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Compartimento Celular , Proteínas Fúngicas/genética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase (Citocromo) , Desnaturação Proteica , Precursores de Proteínas/genética , Sinais Direcionadores de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
4.
J Cell Biol ; 145(5): 961-72, 1999 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-10352014

RESUMO

Tim44 is a protein of the mitochondrial inner membrane and serves as an adaptor protein for mtHsp70 that drives the import of preproteins in an ATP-dependent manner. In this study we have modified the interaction of Tim44 with mtHsp70 and characterized the consequences for protein translocation. By deletion of an 18-residue segment of Tim44 with limited similarity to J-proteins, the binding of Tim44 to mtHsp70 was weakened. We found that in the yeast Saccharomyces cerevisiae the deletion of this segment is lethal. To investigate the role of the 18-residue segment, we expressed Tim44Delta18 in addition to the endogenous wild-type Tim44. Tim44Delta18 is correctly targeted to mitochondria and assembles in the inner membrane import site. The coexpression of Tim44Delta18 together with wild-type Tim44, however, does not stimulate protein import, but reduces its efficiency. In particular, the promotion of unfolding of preproteins during translocation is inhibited. mtHsp70 is still able to bind to Tim44Delta18 in an ATP-regulated manner, but the efficiency of interaction is reduced. These results suggest that the J-related segment of Tim44 is needed for productive interaction with mtHsp70. The efficient cooperation of mtHsp70 with Tim44 facilitates the translocation of loosely folded preproteins and plays a crucial role in the import of preproteins which contain a tightly folded domain.


Assuntos
Proteínas de Transporte/fisiologia , Sobrevivência Celular/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Proteínas de Membrana/fisiologia , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial , Mutação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Transporte Biológico , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Saccharomyces cerevisiae/ultraestrutura
5.
J Cell Biol ; 107(6 Pt 2): 2483-90, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2974457

RESUMO

The precursor of porin, a mitochondrial outer membrane protein, competes for the import of precursors destined for the three other mitochondrial compartments, including the Fe/S protein of the bc1-complex (intermembrane space), the ADP/ATP carrier (inner membrane), subunit 9 of the F0-ATPase (inner membrane), and subunit beta of the F1-ATPase (matrix). Competition occurs at the level of a common site at which precursors are inserted into the outer membrane. Protease-sensitive binding sites, which act before the common insertion site, appear to be responsible for the specificity and selectivity of mitochondrial protein uptake. We suggest that distinct receptor proteins on the mitochondrial surface specifically recognize precursor proteins and transfer them to a general insertion protein component (GIP) in the outer membrane. Beyond GIP, the import pathways diverge, either to the outer membrane or to translocation contact-sites, and then subsequently to the other mitochondrial compartments.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Neurospora crassa/metabolismo , Neurospora/metabolismo , Porinas , Precursores de Proteínas/metabolismo , Sítios de Ligação , Ligação Competitiva , Membrana Celular/metabolismo , Neurospora crassa/ultraestrutura , Canais de Ânion Dependentes de Voltagem
6.
J Cell Biol ; 110(4): 955-61, 1990 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2324202

RESUMO

Two different methods, stimulation of transport by fatty acyl-coenzyme A (CoA) and inhibition of transport by a nonhydrolyzable analogue of palmitoyl-CoA, reveal that fatty acylation is required to promote fusion of transport vesicles with Golgi cisternae. Specifically, fatty acyl-CoA is needed after the attachment of coated vesicles and subsequent uncoating of the vesicles, and after the binding of the NEM-sensitive fusion protein (NSF) to the membranes, but before the actual fusion event. We therefore suggest that an acylated transport component participates, directly or indirectly, in membrane fusion.


Assuntos
Acil Coenzima A/farmacologia , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Fusão de Membrana/efeitos dos fármacos , Organelas/metabolismo , Proteínas de Transporte Vesicular , Transporte Biológico , Sistema Livre de Células , Coenzima A/farmacologia , Detergentes/farmacologia , Etanol/farmacologia , Complexo de Golgi/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Cinética , Proteínas Sensíveis a N-Etilmaleimida , Octoxinol , Organelas/efeitos dos fármacos , Polietilenoglicóis/farmacologia
7.
J Cell Biol ; 123(1): 109-17, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8408191

RESUMO

The role of mitochondrial 70-kD heat shock protein (mt-hsp70) in protein translocation across both the outer and inner mitochondrial membranes was studied using two temperature-sensitive yeast mutants. The degree of polypeptide translocation into the matrix of mutant mitochondria was analyzed using a matrix-targeted preprotein that was cleaved twice by the processing peptidase. A short amino-terminal segment of the preprotein (40-60 amino acids) was driven into the matrix by the membrane potential, independent of hsp70 function, allowing a single cleavage of the presequence. Artificial unfolding of the preprotein allowed complete translocation into the matrix in the case where mutant mt-hsp70 had detectable binding activity. However, in the mutant mitochondria in which binding to mt-hsp70 could not be detected the mature part of the preprotein was only translocated to the intermembrane space. We propose that mt-hsp70 fulfills a dual role in membrane translocation of preproteins. (a) Mt-hsp70 facilitates unfolding of the polypeptide chain for translocation across the mitochondrial membranes. (b) Binding of mt-hsp70 to the polypeptide chain is essential for driving the completion of transport of a matrix-targeted preprotein across the inner membrane. This second role is independent of the folding state of the preprotein, thus identifying mt-hsp70 as a genuine component of the inner membrane translocation machinery. Furthermore we determined the sites of the mutations and show that both a functional ATPase domain and ATP are needed for mt-hsp70 to bind to the polypeptide chain and drive its translocation into the matrix.


Assuntos
Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Compartimento Celular , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Mutação , Neurospora crassa/enzimologia , Neurospora crassa/genética , Desnaturação Proteica , Precursores de Proteínas/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Tetra-Hidrofolato Desidrogenase/genética
8.
J Cell Biol ; 127(6 Pt 1): 1547-56, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7798311

RESUMO

The import of preproteins into mitochondria involves translocation of the polypeptide chains through putative channels in the outer and inner membranes. Preprotein-binding proteins are needed to drive the unidirectional translocation of the precursor polypeptides. Two of these preprotein-binding proteins are the peripheral inner membrane protein MIM44 and the matrix heat shock protein hsp70. We report here that MIM44 is mainly exposed on the matrix side, and a fraction of mt-hsp70 is reversibly bound to the inner membrane. Mt-hsp70 binds to MIM44 in a 1:1 ratio, suggesting that mt-hsp70 is localizing to the membrane via its interaction with MIM44. Formation of the complex requires a functional ATPase domain of mt-hsp70. Addition of Mg-ATP leads to dissociation of the complex. Overexpression of mt-hsp70 rescues the protein import defect of mutants in MIM44; conversely, overexpression of MIM44 rescues protein import defects of mt-hsp70 mutants. In addition, yeast strains with conditional mutations in both MIM44 and mt-hsp70 are barely viable, showing a synthetic growth defect compared to strains carrying single mutations. We propose that MIM44 and mt-hsp70 cooperate in translocation of preproteins. By binding to MIM44, mt-hsp70 is recruited at the protein import sites of the inner membrane, and preproteins arriving at MIM44 may be directly handed over to mt-hsp70.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte/genética , Compartimento Celular , Reagentes de Ligações Cruzadas , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Mutação , Testes de Precipitina , Ligação Proteica/efeitos dos fármacos , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Supressão Genética
9.
J Cell Biol ; 115(6): 1601-9, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1757464

RESUMO

With vital yeast cells, a hybrid protein consisting of the amino-terminal third of the precursor to cytochrome b2 and of the entire dihydrofolate reductase was arrested on the import pathway into mitochondria. Accumulation of the protein in the mitochondrial membranes was achieved by inducing a stable tertiary structure of the dihydrofolate reductase domain. Thereby, three salient features of mitochondrial protein uptake in vivo were demonstrated: its posttranslational character; the requirement for unfolding of precursors; and import through translocation contact sites. The permanent occupation of translocation sites by the fusion protein inhibited the import of other precursors; it did, however, not lead to leakage of mitochondrial ions, implying the existence of a channel that is sealed around the membrane spanning polypeptide segment.


Assuntos
Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Aminopterina/farmacologia , Transporte Biológico , Membranas Intracelulares/metabolismo , Cinética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase (Citocromo) , Potenciais da Membrana , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
10.
J Cell Biol ; 152(2): 289-300, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11266446

RESUMO

Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.


Assuntos
Membranas Intracelulares/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/fisiologia , Porinas/biossíntese , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Genótipo , Membranas Intracelulares/ultraestrutura , Cinética , Proteínas de Membrana/química , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurospora crassa/genética , Neurospora crassa/fisiologia , Neurospora crassa/ultraestrutura , Porinas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Canais de Ânion Dependentes de Voltagem
11.
J Cell Biol ; 111(6 Pt 1): 2353-63, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2177474

RESUMO

We have identified the yeast homologue of Neurospora crassa MOM72, the mitochondrial import receptor for the ADP/ATP carrier (AAC), by functional studies and by cDNA sequencing. Mitochondria of a yeast mutant in which the gene for MOM72 was disrupted were impaired in specific binding and import of AAC. Unexpectedly, we found a residual, yet significant import of AAC into mitochondria lacking MOM72 that occurred via the receptor MOM19. We conclude that both MOM72 and MOM19 can direct AAC into mitochondria, albeit with different efficiency. Moreover, the precursor of MOM72 apparently does not require a positively charged sequence at the extreme amino terminus for targeting to mitochondria.


Assuntos
Proteínas Fúngicas , Proteínas de Membrana , Mitocôndrias/enzimologia , Translocases Mitocondriais de ADP e ATP/genética , Neurospora crassa/genética , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/genética , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , DNA Fúngico/genética , Genes Fúngicos , Cinética , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Peso Molecular , Neurospora crassa/enzimologia , Receptores de Superfície Celular/isolamento & purificação , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência do Ácido Nucleico
12.
Science ; 254(5038): 1659-62, 1991 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-1661031

RESUMO

The targeting of proteins to mitochondria involves the recognition of the precursor proteins by receptors on the mitochondrial surface followed by insertion of the precursors into the outer membrane at the general insertion site GIP. Most mitochondrial proteins analyzed so far use a mitochondrial outer membrane protein of 19 kilodaltons (MOM19) as an import receptor. The gene encoding MOM19 has now been isolated. The deduced amino acid sequence predicts that MOM19 is anchored in the outer membrane by an NH2-terminal hydrophobic sequence, while the rest of the protein forms a hydrophilic domain exposed to the cytosol. MOM19 was targeted to the mitochondria via a pathway that is independent of protease-accessible surface receptors and controlled by direct assembly of the MOM19 precursor with GIP.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares , Sequência de Aminoácidos , Compartimento Celular , DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos , Membranas Intracelulares/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Precursores de Proteínas/metabolismo , Proteínas Recombinantes
13.
Trends Biochem Sci ; 16(2): 63-7, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1650040

RESUMO

The specific targeting of precursor proteins synthesized in the cytosol to various cell organelles is a central aspect of intracellular protein traffic. Several hundred different proteins are imported from the cytosol into the mitochondria. Recent studies have identified the mitochondrial outer membrane proteins MOM19, MOM72, MOM38 (approximately ISP42) and p32 which have a role in initial steps of protein import. The first three components are present in a multi-subunit complex that catalyses recognition and membrane insertion of precursor proteins.


Assuntos
Proteínas Fúngicas , Proteínas de Membrana , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares , Transporte Biológico Ativo
14.
Trends Biochem Sci ; 19(9): 368-72, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7985230

RESUMO

Mitochondria import most of their proteins from the cytosol. Although considerable information is available on the import machineries of the mitochondrial outer membrane and matrix, until recently little was known about the machinery of the inner membrane. Recent studies have identified three mitochondrial inner membrane proteins (MIMs) as essential components of the import machinery. MIM17 and MIM23 seem to form part of a channel, while MIM44, in cooperation with the heat-shock protein Hsp70, binds the preproteins in transit. The electrical membrane potential and ATP are needed to drive protein translocation through the MIM import machinery.


Assuntos
Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Transporte Biológico , Proteínas de Transporte/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Potenciais da Membrana , Saccharomyces cerevisiae
15.
Curr Biol ; 10(11): R412-5, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10837244

RESUMO

The mitochondrial protein import machinery specifically recognizes many different preproteins lacking a consensus sequence. The three-dimensional structure of an import receptor complexed to an amino-terminal targeting 'presequence' provides exciting insight into the molecular mechanism of signal recognition.


Assuntos
Membranas Intracelulares/fisiologia , Mitocôndrias/fisiologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Membranas Intracelulares/ultraestrutura , Mitocôndrias/ultraestrutura , Modelos Biológicos , Conformação Proteica , Precursores de Proteínas/química
16.
Curr Biol ; 8(8): R262-5, 1998 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-9550695

RESUMO

Mitochondrial protein import follows a general pathway for preproteins with amino-terminal presequences. The discovery of novel import components has now revealed a distinct pathway for translocation of hydrophobic proteins across the intermembrane space and into the inner membrane.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Membranas Intracelulares/metabolismo , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Curr Biol ; 9(19): R720-4, 1999 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-10531000

RESUMO

The physiological roles of the molecular chaperones trigger factor and DnaK in de novo protein folding have been unclear, but two new studies have shown that they perform essential, yet partially redundant, functions in chaperoning nascent protein chains in bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Escherichia coli , Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Proteínas de Bactérias/fisiologia , Chaperonina 60/química , Chaperonina 60/fisiologia , Citosol/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/fisiologia , Peptidilprolil Isomerase/fisiologia , Biossíntese de Proteínas/fisiologia
18.
Curr Biol ; 5(2): 132-5, 1995 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-7743175

RESUMO

Two driving mechanisms, one powered by membrane potential and the other a combination of pulling and trapping, seem to be involved in protein import into mitochondria.


Assuntos
Potenciais da Membrana , Mitocôndrias/metabolismo , Proteínas/metabolismo , Transporte Biológico , Processamento de Proteína Pós-Traducional
19.
Curr Biol ; 7(2): R100-3, 1997 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9081657

RESUMO

Translocation of precursor proteins into mitochondria depends on loosely assembled protein complexes in the outer and inner membranes. Recent studies indicate that dynamic interactions of subcomplexes and cooperation with molecular chaperones drive key steps in protein import.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Precursores de Proteínas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Membranas Intracelulares/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Canais de Translocação SEC , Proteínas SecA
20.
Curr Biol ; 6(2): 115-8, 1996 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-8673451

RESUMO

A number of molecular chaperones have been found to interact with nascent polypeptides attached to ribosomes, allowing these protein-synthesis machines to play a key part in protein folding and targeting.


Assuntos
Chaperonas Moleculares/metabolismo , Biossíntese Peptídica , Transativadores , Isomerases de Aminoácido/metabolismo , Animais , Proteínas de Transporte/metabolismo , Peptidilprolil Isomerase , Proteínas/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA