Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2406837121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312663

RESUMO

Cancers develop resistance to inhibitors of oncogenes mainly due to target-centric mechanisms such as mutations and splicing. While inhibitors or antagonists force targets to unnatural conformation contributing to protein instability and resistance, activating tumor suppressors may maintain the protein in an agonistic conformation to elicit sustainable growth inhibition. Due to the lack of tumor suppressor agonists, this hypothesis and the mechanisms underlying resistance are not understood. In estrogen receptor (ER)-positive breast cancer (BC), androgen receptor (AR) is a druggable tumor suppressor offering a promising avenue for this investigation. Spatial genomics suggests that the molecular portrait of AR-expressing BC cells in tumor microenvironment corresponds to better overall patient survival, clinically confirming AR's role as a tumor suppressor. Ligand activation of AR in ER-positive BC xenografts reprograms cistromes, inhibits oncogenic pathways, and promotes cellular elasticity toward a more differentiated state. Sustained AR activation results in cistrome rearrangement toward transcription factor PROP paired-like homeobox 1, transformation of AR into oncogene, and activation of the Janus kinase/signal transducer (JAK/STAT) pathway, all culminating in lineage plasticity to an aggressive resistant subtype. While the molecular profile of AR agonist-sensitive tumors corresponds to better patient survival, the profile represented in the resistant phenotype corresponds to shorter survival. Inhibition of activated oncogenes in resistant tumors reduces growth and resensitizes them to AR agonists. These findings indicate that persistent activation of a context-dependent tumor suppressor may lead to resistance through lineage plasticity-driven tumor metamorphosis. Our work provides a framework to explore the above phenomenon across multiple cancer types and underscores the importance of factoring sensitization of tumor suppressor targets while developing agonist-like drugs.


Assuntos
Neoplasias da Mama , Receptores Androgênicos , Receptores de Estrogênio , Fatores de Transcrição STAT , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Animais , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Oncogenes , Janus Quinases/metabolismo , Camundongos , Transdução de Sinais , Linhagem Celular Tumoral , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 120(1): e2211832120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577061

RESUMO

Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/metabolismo , Cisteína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo
3.
J Biol Chem ; 300(8): 107582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025453

RESUMO

The Ccr4-Not complex contains the poorly understood Not4 ubiquitin ligase that functions in transcription, mRNA decay, translation, proteostasis, and endolysosomal nutrient signaling. To gain further insight into the in vivo functions of the ligase, we performed quantitative proteomics in Saccharomyces cerevisiae using yeast cells lacking Not4, or cells overexpressing wild-type Not4 or an inactive Not4 mutant. Herein, we provide evidence that balanced Not4 activity maintains ribosomal protein (RP) homeostasis independent of changes to RP mRNA or known Not4 ribosomal substrates. Intriguingly, we also find that Not4 loss activates 40S ribosomal autophagy independently of canonical Atg7-dependent macroautophagy, indicating that microautophagy is responsible. We previously demonstrated that Ccr4-Not stimulates the target of rapamycin complex 1 (TORC1) signaling, which activates RP expression and inhibits autophagy, by maintaining vacuole V-ATPase H+ pump activity. Importantly, combining Not4 deficient cells with a mutant that blocks vacuole H+ export fully restores RP expression and increases 40S RP autophagy efficiency. In contrast, restoring TORC1 activity alone fails to rescue either process, indicating that Not4 loss disrupts additional endolysosomal functions that regulate RP expression and 40S autophagy. Analysis of the Not4-regulated proteome reveals increases in endolysosomal and autophagy-related factors that functionally interact with Not4 to control RP expression and affect 40S autophagy. Collectively, our data indicate that balanced Ccr4-Not ubiquitin ligase signaling maintains RP homeostasis and inhibits 40S autophagy via the ligase's emerging role as an endolysosomal regulator.


Assuntos
Autofagia , Homeostase , Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transdução de Sinais , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Ribonucleases
4.
J Cell Mol Med ; 27(18): 2770-2781, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37593885

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. While surgical resection is the primary treatment, adjuvant temozolomide (TMZ) chemotherapy and radiotherapy only provide slight improvement in disease course and outcome. Unfortunately, most treated patients experience recurrence of highly aggressive, therapy-resistant tumours and eventually succumb to the disease. To increase chemosensitivity and overcome therapy resistance, we have modified the chemical structure of the PFI-3 bromodomain inhibitor of the BRG1 and BRM catalytic subunits of the SWI/SNF chromatin remodelling complex. Our modifications resulted in compounds that sensitized GBM to the DNA alkylating agent TMZ and the radiomimetic bleomycin. We screened these chemical analogues using a cell death ELISA with GBM cell lines and a cellular thermal shift assay using epitope tagged BRG1 or BRM bromodomains expressed in GBM cells. An active analogue, IV-129, was then identified and further modified, resulting in new generation of bromodomain inhibitors with distinct properties. IV-255 and IV-275 had higher bioactivity than IV-129, with IV-255 selectively binding to the bromodomain of BRG1 and not BRM, while IV-275 bound well to both BRG1 and BRM bromodomains. In contrast, IV-191 did not bind to either bromodomain or alter GBM chemosensitivity. Importantly, both IV-255 and IV-275 markedly increased the extent of DNA damage induced by TMZ and bleomycin as determined by nuclear γH2AX staining. Our results demonstrate that these next-generation inhibitors selectively bind to the bromodomains of catalytic subunits of the SWI/SNF complex and sensitize GBM to the anticancer effects of TMZ and bleomycin. This approach holds promise for improving the treatment of GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Domínios Proteicos , Temozolomida/farmacologia , Morte Celular , Bleomicina/farmacologia , Dano ao DNA
5.
J Cell Mol Med ; 26(14): 3873-3890, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670018

RESUMO

Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine-727 and Tyrosine-705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2-AMPKα-ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3-KO cells by the enforced expression of wild-type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F- and S727A-STAT3 phosphorylation deficient mutants in STAT3-KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3-KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3-dependent autophagy in GBM, and thus are potential targets to treat GBM.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Glioblastoma , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Transcrição STAT3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismo
6.
J Cell Mol Med ; 26(16): 4591-4601, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841281

RESUMO

Tumour Necrosis Factor (TNF) potently induces a transient inflammatory response that must be downregulated once any invasive stimulus has resolved. Yet, how TNF-induced inflammation is shut down in normal cells is incompletely understood. The present study shows that STAT3 was activated in mouse embryo fibroblasts (MEFs) by treatment with TNF or an agonist antibody to TNFR1. STAT3 activation was inhibited by pharmacological inhibition of the Jak2 tyrosine kinase that associates with TNFR1. To identify STAT3 target genes, global transcriptome analysis by RNA sequencing was performed in wild-type MEFs and MEFs from STAT3 knockout (STAT3KO ) mice that were stimulated with TNF, and the results were validated at the protein level by using multiplex cytokine assays and immunoblotting. After TNF stimulation, STAT3KO MEFs showed greater gene and protein induction of the inflammatory chemokines Ccl2, Cxcl1 and Cxcl10 than WT MEFs. These observations show that, by activating STAT3, TNF selectively modulates expression of a cohort of chemokines that promote inflammation. The greater induction by TNF of chemokines in STAT3KO than WT MEFs suggested that TNF induced an inhibitory protein in WT MEFs. Consistent with this possibility, STAT3 activation by TNFR1 increased the expression of Tnfaip3/A20, a ubiquitin modifying enzyme that inhibits inflammation, in WT MEFs but not in STAT3KO MEFs. Moreover, enforced expression of Tnfaip3/A20 in STAT3KO MEFs suppressed proinflammatory chemokine expression induced by TNF. Our observations identify Tnfaip3/A20 as a new downstream target for STAT3 which limits the induction of Ccl2, Cxcl1 and Cxcl10 and inflammation induced by TNF.


Assuntos
Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Expressão Gênica , Inflamação , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Transcrição STAT3/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Bioorg Med Chem ; 53: 116533, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863065

RESUMO

Glioblastoma (GBM) is the most aggressive and treatment-refractory malignant adult brain cancer. After standard of care therapy, the overall median survival for GBM is only ∼6 months with a 5-year survival <10%. Although some patients initially respond to the DNA alkylating agent temozolomide (TMZ), unfortunately most patients become resistant to therapy and brain tumors eventually recur. We previously found that knockout of BRG1 or treatment with PFI-3, a small molecule inhibitor of the BRG1 bromodomain, enhances sensitivity of GBM cells to temozolomide in vitro and in vivo GBM animal models. Those results demonstrated that the BRG1 catalytic subunit of the SWI/SNF chromatin remodeling complex appears to play a critical role in regulating TMZ-sensitivity. In the present study we designed and synthesized Structurally Related Analogs of PFI-3 (SRAPs) and tested their bioactivity in vitro. Among of the SRAPs, 9f and 11d show better efficacy than PFI-3 in sensitizing GBM cells to the antiproliferative and cell death inducing effects of temozolomide in vitro, as well as enhancing the inhibitor effect of temozolomide on the growth of subcutaneous GBM tumors.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Compostos Azabicíclicos/farmacologia , DNA Helicases/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Piridinas/farmacologia , Temozolomida/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos Alquilantes/química , Compostos Azabicíclicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Helicases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Nucleares/metabolismo , Piridinas/química , Relação Estrutura-Atividade , Temozolomida/química , Fatores de Transcrição/metabolismo
8.
J Cell Mol Med ; 25(6): 2956-2966, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33528916

RESUMO

Glioblastoma multiforme (GBM) is an aggressive malignant brain tumour that is resistant to existing therapeutics. Identifying signalling pathways deregulated in GBM that can be targeted therapeutically is critical to improve the present dismal prognosis for GBM patients. In this report, we have identified that the BRG1 (Brahma-Related Gene-1) catalytic subunit of the SWI/SNF chromatin remodelling complex promotes the malignant phenotype of GBM cells. We found that BRG1 is ubiquitously expressed in tumour tissue from GBM patients, and high BRG1 expression levels are localized to specific brain tumour regions. Knockout (KO) of BRG1 by CRISPR-Cas9 gene editing had minimal effects on GBM cell proliferation, but significantly inhibited GBM cell migration and invasion. BRG1-KO also sensitized GBM cells to the anti-proliferative effects of the anti-cancer agent temozolomide (TMZ), which is used to treat GBM patients in the clinic, and selectively altered STAT3 tyrosine phosphorylation and gene expression. These results demonstrate that BRG-1 promotes invasion and migration, and decreases chemotherapy sensitivity, indicating that it functions in an oncogenic manner in GBM cells. Taken together, our findings suggest that targeting BRG1 in GBM may have therapeutic benefit in the treatment of this deadly form of brain cancer.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , DNA Helicases/genética , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Nucleares/genética , Fenótipo , Fatores de Transcrição/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Biologia Computacional/métodos , DNA Helicases/metabolismo , Edição de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
9.
Hum Mol Genet ; 26(13): 2526-2540, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453658

RESUMO

Duchenne muscular dystrophy (DMD) is a neuromuscular disease that predominantly affects boys as a result of mutation(s) in the dystrophin gene. DMD is characterized by musculoskeletal and cardiopulmonary complications, resulting in shorter life-span. Boys afflicted by DMD typically exhibit symptoms within 3-5 years of age and declining physical functions before attaining puberty. We hypothesized that rapidly deteriorating health of pre-pubertal boys with DMD could be due to diminished anabolic actions of androgens in muscle, and that intervention with an androgen receptor (AR) agonist will reverse musculoskeletal complications and extend survival. While castration of dystrophin and utrophin double mutant (mdx-dm) mice to mimic pre-pubertal nadir androgen condition resulted in premature death, maintenance of androgen levels extended the survival. Non-steroidal selective-AR modulator, GTx-026, which selectively builds muscle and bone was tested in X-linked muscular dystrophy mice (mdx). GTx-026 significantly increased body weight, lean mass and grip strength by 60-80% over vehicle-treated mdx mice. While vehicle-treated castrated mdx mice exhibited cardiopulmonary impairment and fibrosis of heart and lungs, GTx-026 returned cardiopulmonary function and intensity of fibrosis to healthy control levels. GTx-026 elicits its musculoskeletal effects through pathways that are distinct from dystrophin-regulated pathways, making AR agonists ideal candidates for combination approaches. While castration of mdx-dm mice resulted in weaker muscle and shorter survival, GTx-026 treatment increased the muscle mass, function and survival, indicating that androgens are important for extended survival. These preclinical results support the importance of androgens and the need for intervention with AR agonists to treat DMD-affected boys.


Assuntos
Androgênios/metabolismo , Distrofia Muscular de Duchenne/genética , Androgênios/genética , Animais , Modelos Animais de Doenças , Distrofina/genética , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos mdx , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/metabolismo , Receptores Androgênicos/metabolismo , Maturidade Sexual , Utrofina/genética
10.
Stem Cells ; 36(12): 1804-1815, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171737

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor that is refractory to existing therapeutic regimens, which reflects the presence of stem-like cells, termed glioma-initiating cells (GICs). The complex interactions between different signaling pathways and epigenetic regulation of key genes may be critical in the maintaining GICs in their stem-like state. Although several signaling pathways have been identified as being dysregulated in GBM, the prognosis of GBM patients remains miserable despite improvements in targeted therapies. In this report, we identified that BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, plays a fundamental role in maintaining GICs in their stem-like state. In addition, we identified a novel mechanism by which BRG1 regulates glycolysis genes critical for GICs. BRG1 downregulates the expression of TXNIP, a negative regulator of glycolysis. BRG1 knockdown also triggered the STAT3 pathway, which led to TXNIP activation. We further identified that TXNIP is an STAT3-regulated gene. Moreover, BRG1 suppressed the expression of interferon-stimulated genes, which are negatively regulated by STAT3 and regulate tumorigenesis. We further demonstrate that BRG1 plays a critical role in the drug resistance of GICs and in GIC-induced tumorigenesis. By genetic and pharmacological means, we found that inhibiting BRG1 can sensitize GICs to chemotherapeutic drugs, temozolomide and carmustine. Our studies suggest that BRG1 may be a novel therapeutic target in GBM. The identification of the critical role that BRG1 plays in GIC stemness and chemosensitivity will inform the development of better targeted therapies in GBM and possibly other cancers. Stem Cells 2018;36:1806-12.


Assuntos
Cromatina/metabolismo , DNA Helicases/genética , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Glioma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia
11.
Breast Cancer Res ; 20(1): 117, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285805

RESUMO

BACKGROUND: Metastasis is responsible for a significant number of breast cancer-related deaths. Hypoxia, a primary driving force of cancer metastasis, induces the expression of BHLHE40, a transcription regulator. This study aimed to elucidate the function of BHLHE40 in the metastatic process of breast cancer cells. METHODS: To define the role of BHLHE40 in breast cancer, BHLHE40 expression was knocked down by a lentiviral construct expressing a short hairpin RNA against BHLHE40 or knocked out by the CRISPR/Cas9 editing system. Orthotopic xenograft and experimental metastasis (tail vein injection) mouse models were used to analyze the role of BHLHE40 in lung metastasis of breast cancer. Global gene expression analysis and public database mining were performed to identify signaling pathways regulated by BHLHE40 in breast cancer. The action mechanism of BHLHE40 was examined by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (CoIP), exosome analysis, and cell-based assays for metastatic potential. RESULTS: BHLHE40 knockdown significantly reduced primary tumor growth and lung metastasis in orthotopic xenograft and experimental metastasis models of breast cancer. Gene expression analysis implicated a role of BHLHE40 in transcriptional activation of heparin-binding epidermal growth factor (HBEGF). ChIP and CoIP assays revealed that BHLHE40 induces HBEGF transcription by blocking DNA binding of histone deacetylases (HDAC)1 and HDAC2. Cell-based assays showed that HBEGF is secreted through exosomes and acts to promote cell survival and migration. Public databases provided evidence linking high expression of BHLHE40 and HBEGF to poor prognosis of triple-negative breast cancer. CONCLUSION: This study reveals a novel role of BHLHE40 in promoting tumor cell survival and migration by regulating HBEGF secretion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fenótipo , Interferência de RNA , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Semin Cancer Biol ; 36: 80-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26433073

RESUMO

MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment.


Assuntos
Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/genética , Neoplasias/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Interferência de RNA , RNA Mensageiro/genética
13.
Biochem Biophys Res Commun ; 490(3): 739-745, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28642132

RESUMO

Type I interferon (IFNα/ß) induces antiviral and antiproliferative responses in cells through the induction of IFN-stimulated genes (ISGs). Although the roles of IFN-activated STAT1 and STAT2 in the IFN response are well described, the function of STAT3 is poorly characterized. We investigated the role of STAT3 in the biological response to IFNα/ß in mouse embryonic fibroblasts (MEFs) with a germ line deletion of STAT3. These STAT3 knockout (STAT3-KO) MEFs were reconstituted with STAT3 or the F705-STAT3 mutant (unphosphorylated STAT3) where the canonical Y705 tyrosine phosphorylation site was mutated. We show that both STAT3 and unphosphorylated STAT3 expression enhance the sensitivity of MEFs to the antiviral, antiproliferative and gene-inducing actions of IFN. By chromatin immunoprecipitation assays, unphosphorylated STAT3 appears to bind, albeit weakly, to select gene promoters to enhance their expression. These results suggest that unphosphorylated STAT3 plays an important role in the IFN response pathway.


Assuntos
Antivirais/farmacologia , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Interferon Tipo I/farmacologia , Fator de Transcrição STAT3/metabolismo , Ativação Transcricional/efeitos dos fármacos , Animais , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Camundongos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Fator de Transcrição STAT3/genética
14.
Biochem Biophys Res Commun ; 491(2): 343-348, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-28728846

RESUMO

Glioblastomas (GBMs) are highly invasive brain tumors that are extremely deadly. The highly aggressive nature of GBM as well as its heterogeneity at the molecular and cellular levels has been attributed to a rare subpopulation of GBM stem-like cells (GSCs). Interferons (IFNs) are a family of endogenous antiviral proteins that have anticancer activity in vitro, and have been used clinically to treat GBM. IFN inhibits the proliferation of various established GBM cell lines, but the effects of IFNs on GSCs remain relatively unknown. The present study explored the effects of IFN on the proliferation and the differentiation capacity of GSCs isolated from GBM patient-derived xenolines (PDXs) grown as xenografts in immunocompromised mice. We show that IFN inhibits the proliferation of GSCs, inhibits the sphere forming capacity of GSCs that is a hallmark of cancer stem cells, and inhibits the ability of GSCs to differentiate into astrocytic cells. In addition, we show that IFN induces transient STAT3 activation in GSCs, while induction of astrocytic differentiation in GSCs results in sustained STAT3 activation.


Assuntos
Astrócitos/efeitos dos fármacos , Interferon Tipo I/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Antígeno AC133/genética , Antígeno AC133/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Proteína Glial Fibrilar Ácida , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/cirurgia , Xenoenxertos/crescimento & desenvolvimento , Xenoenxertos/metabolismo , Xenoenxertos/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Nestina/genética , Nestina/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Ubiquitinas/genética , Ubiquitinas/metabolismo
15.
Biochem Biophys Res Commun ; 484(3): 486-492, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28108288

RESUMO

KLF4 is a transcriptional factor that can function either as a tumor suppressor or oncogene in cancer based on its cellular context. We recently demonstrated that KLF4 was a tumor suppressor in ovarian cancer cells by inhibiting the epithelial to mesenchymal transition. Here we report that KLF4 expression was downregulated in ovarian cancer tissue compared to normal ovarian tissue, and low KLF4 expression correlated with high risk ovarian carcinoma and poor patient survival. Enforced KLF4 expression by lentiviral transduction sensitized ovarian cancer cells to the effects of the chemotherapy drugs, paclitaxel and cisplatin. Treatment of ovarian cancer cells with APTO-253, a small molecule inducer of KLF4, enhanced the efficacy of both chemotherapy drugs. KLF4 expression mediated by lentiviral vector or induced by APTO-253 resulted in G1 phase arrest in ovarian cancer cells. Our results demonstrate that for the first time that inducing KLF4 expression with APTO-253 is a novel therapeutic strategy for treating ovarian cancer.


Assuntos
Antineoplásicos/administração & dosagem , Biomarcadores Tumorais/metabolismo , Imidazóis/administração & dosagem , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fenantrolinas/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/agonistas , Neoplasias Ovarianas/patologia , Regulação para Cima/efeitos dos fármacos
16.
J Biol Chem ; 290(10): 6037-46, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25589783

RESUMO

The microRNA miR-21 is overexpressed in most human cancers and accumulating evidence indicates that it functions as an oncogene. Since miRNAs suppress the expression of their target genes, we hypothesized that some miR-21 targets may act as tumor suppressors, and thus their expression would be anticipated to be reduced by the high miR-21 levels observed in various human cancers. By microarray analysis and quantitative PCR we identified and validated FBXO11 (a member of the F-box subfamily lacking a distinct unifying domain) as a miR-21 target gene. FBXO11 is a component of the SKP1-CUL1-F-box ubiquitin ligase complex that targets proteins for ubiquitination and proteosomal degradation. By loss of function and gain of function studies, we show that FBXO11 acts as a tumor suppressor, promotes apoptosis and mediates the degradation of the oncogenic protein BCL6. The critical role that FBXO11 plays in miR-21-mediated tumorigenesis was demonstrated by a rescue experiment, in which silencing FBXO11 in miR-21KD cancer cells restored their high tumorigenicity. Expression of miR-21 and FBXO11 are inversely correlated in tumor tissue, and their expression correlates with patient survival and tumor grade. High FBXO11 expression correlates with better patient survival and lower tumor grade consistent with its tumor suppressor activity. In contrast high miR-21 expression, which correlates with poor patient survival and higher tumor grade, is consistent with its oncogenic activity. Our results identify FBXO11 as a novel miR-21 target gene, and demonstrate that the oncogenic miRNA miR-21 decreases the expression of FBXO11, which normally acts as a tumor suppressor, and thereby promotes tumorigenesis.


Assuntos
Carcinogênese/genética , Proteínas F-Box/genética , MicroRNAs/biossíntese , Proteína-Arginina N-Metiltransferases/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos , Terapia de Alvo Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína-Arginina N-Metiltransferases/metabolismo
17.
Breast Cancer Res ; 18(1): 81, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27495308

RESUMO

BACKGROUND: While aberrant activation of the chromatin-remodeling SWI/SNF complexes has been associated with cancer development and progression, the role of each subunit in tumor cells is poorly defined. This study is aimed to characterize the role of SMARCE1/BAF57 in regulating metastasis of breast cancer cells. METHODS: Genetic approaches and chemical inhibitors were used to manipulate the activities of SMARCE1 and its downstream targets in multiple breast cancer cell lines. Xenograft mouse models were used to analyze the role of SMARCE1 in lung metastasis in vivo. Nonadherent culture conditions were used to elucidate the role of SMARCE1 in regulating anoikis. Chromatin immunoprecipitation (ChIP), immunoprecipitation, and immunoblotting assays were designed to dissect the mechanism of action of SMARCE1. Public databases were used to investigate the relationship between SMARCE1 deregulation and breast cancer prognosis. RESULTS: SMARCE1 knockdown reduced lung metastasis of breast cancer cells and sensitized tumor cells to anoikis. In response to loss of attachment, SMARCE1 interacted with and potentiated transcriptional activity of HIF1A, resulting in rapid PTK2 activation. Both HIF1A and PTK2 were indispensable for SMARCE1-mediated protection against anoikis by promoting activation of ERK and AKT pathways while suppressing the expression of pro-apoptotic BIM protein. Expression data analysis of a large cohort of human breast tumors revealed that high expression of SMARCE1 or PTK2 is associated with poor prognosis and tumor relapse, and PTK2 expression is positively correlated with SMARCE1 expression in basal-like and luminal B subtypes of breast tumors. CONCLUSIONS: SMARCE1 plays an essential role in breast cancer metastasis by protecting cells against anoikis through the HIF1A/PTK2 pathway. SMARCE1-mediated PTK2 activation likely plays a key role in promoting metastasis of basal-like and luminal B subtype of breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Anoikis , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Feminino , Quinase 1 de Adesão Focal/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional
18.
Biochem Biophys Res Commun ; 478(1): 128-134, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450810

RESUMO

Glioblastomas are highly invasive and aggressive primary brain tumors. Type I interferons have significant, pleiotropic anticancer activity. However, through various pathways many cancers become interferon-resistant, limiting interferon's clinical utility. In this study, we demonstrated that the proteasomal inhibitor bortezomib sensitized human glioblastoma cells to the antiproliferative action of interferons, which involved the induction of caspase-dependent apoptosis but not necroptosis. We found that death ligands such as TRAIL (TNF-related apoptosis-inducing ligand) were not involved in interferon/bortezomib-induced apoptosis, although interferon induced TRAIL expression. However, apoptosis was induced through an intrinsic pathway involving increased NOXA expression and Mcl-1 cleavage. Our findings may provide an important rationale for combining type I interferons with bortezomib for glioblastoma therapy.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Interferon Tipo I/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Interferon Tipo I/administração & dosagem , Proteólise/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
J Biol Chem ; 289(36): 25079-87, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25059666

RESUMO

Despite advances in surgery, imaging, chemotherapy, and radiation, patients with glioblastoma multiforme (GBM), the most common histological subtype of glioma, have an especially dismal prognosis; >70% of GBM patients die within 2 years of diagnosis. In many human cancers, the microRNA miR-21 is overexpressed, and accumulating evidence indicates that it functions as an oncogene. Here, we report that miR-21 is overexpressed in human GBM cell lines and tumor tissue. Moreover, miR-21 expression in GBM patient samples is inversely correlated with patient survival. Knockdown of miR-21 in GBM cells inhibited cell proliferation in vitro and markedly inhibited tumor formation in vivo. A number of known miR-21 targets have been identified previously. By microarray analysis, we identified and validated insulin-like growth factor (IGF)-binding protein-3 (IGFBP3) as a novel miR-21 target gene. Overexpression of IGFBP3 in glioma cells inhibited cell proliferation in vitro and inhibited tumor formation of glioma xenografts in vivo. The critical role that IGFBP3 plays in miR-21-mediated actions was demonstrated by a rescue experiment, in which IGFBP3 knockdown in miR-21KD glioblastoma cells restored tumorigenesis. Examination of tumors from GBM patients showed that there was an inverse relationship between IGFBP3 and miR-21 expression and that increased IGFBP3 expression correlated with better patient survival. Our results identify IGFBP3 as a novel miR-21 target gene in glioblastoma and suggest that the oncogenic miRNA miR-21 down-regulates the expression of IGFBP3, which acts as a tumor suppressor in human glioblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Humanos , Immunoblotting , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA