Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339073

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy with a limited five-year survival for metastatic patients. Limited therapeutic treatments are currently available for metastatic disease, even if the genomics of this tumor has been deeply studied using next-generation sequencing (NGS) and functional experiments. The profound knowledge of the molecular features that characterize this tumor has not led to the development of efficacious therapies, and the survival of metastatic patients has not changed for decades. Several bioinformatics methods have been applied to mine NGS tumor data in order to unveil tumor biology and detect possible molecular targets for new therapies. Each application can be single domain based while others are more focused on data integration from multiple genomics domains (as gene expression and methylation data). Examples of single domain approaches include differentially expressed gene (DEG) analysis on gene expression data with statistical methods such as SAM (significance analysis of microarray) or gene prioritization with complex algorithms such as deep learning. Data fusion or integration methods merge multiple domains of information to define new clusters of patients or to detect relevant genes, according to multiple NGS data. In this work, we compare different strategies to detect relevant genes for metastatic disease prediction in the TCGA uveal melanoma (UVM) dataset. Detected targets are validated with multi-gene score analysis on a larger UM microarray dataset.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Melanoma/patologia , Neoplasias Uveais/patologia , Análise em Microsséries
2.
Biomedicines ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551996

RESUMO

There is a growing number of multi-domain genomic datasets for human tumors. Multi-domain data are usually interpreted after separately analyzing single-domain data and integrating the results post hoc. Data fusion techniques allow for the real integration of multi-domain data to ideally improve the tumor classification results for the prognosis and prediction of response to therapy. We have previously described the joint singular value decomposition (jSVD) technique as a means of data fusion. Here, we report on the development of these methods in open source code based on R and Python and on the application of these data fusion methods. The Cancer Genome Atlas (TCGA) Skin Cutaneous Melanoma (SKCM) dataset was used as a benchmark to evaluate the potential of the data fusion approaches to improve molecular classification of cancers in a clinically relevant manner. Our data show that the data fusion approach does not generate classification results superior to those obtained using single-domain data. Data from different domains are not entirely independent from each other, and molecular classes are characterized by features that penetrate different domains. Data fusion techniques might be better suited for response prediction, where they could contribute to the identification of predictive features in a domain-independent manner to be used as biomarkers.

3.
Cancers (Basel) ; 11(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561508

RESUMO

Uveal melanoma (UM) is a rare cancer that is well characterized at the molecular level. Two to four classes have been identified by the analyses of gene expression (mRNA, ncRNA), DNA copy number, DNA-methylation and somatic mutations yet no factual integration of these data has been reported. We therefore applied novel algorithms for data fusion, joint Singular Value Decomposition (jSVD) and joint Constrained Matrix Factorization (jCMF), as well as similarity network fusion (SNF), for the integration of gene expression, methylation and copy number data that we applied to the Cancer Genome Atlas (TCGA) UM dataset. Variant features that most strongly impact on definition of classes were extracted for biological interpretation of the classes. Data fusion allows for the identification of the two to four classes previously described. Not all of these classes are evident at all levels indicating that integrative analyses add to genomic discrimination power. The classes are also characterized by different frequencies of somatic mutations in putative driver genes (GNAQ, GNA11, SF3B1, BAP1). Innovative data fusion techniques confirm, as expected, the existence of two main types of uveal melanoma mainly characterized by copy number alterations. Subtypes were also confirmed but are somewhat less defined. Data fusion allows for real integration of multi-domain genomic data.

4.
PLoS One ; 8(5): e64079, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691154

RESUMO

Citizen science programs are increasingly popular for a variety of reasons, from public education to new opportunities for data collection. The literature published in scientific journals resulting from these projects represents a particular perspective on the process. These articles often conclude with recommendations for increasing "success". This study compared these recommendations to those elicited during interviews with program coordinators for programs within the United States. From this comparison, success cannot be unilaterally defined and therefore recommendations vary by perspective on success. Program coordinators tended to have more locally-tailored recommendations specific to particular aspects of their program mission.


Assuntos
Coleta de Dados , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA