Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 15(8): 2407-21, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27225728

RESUMO

The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.


Assuntos
Reprogramação Celular , Oócitos/química , Proteína-Arginina N-Metiltransferases/fisiologia , Fatores de Transcrição SOXB1/fisiologia , Animais , Cromatografia Líquida , Desenvolvimento Embrionário , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Pluripotentes/citologia , Proteômica/métodos , Espectrometria de Massas em Tandem
2.
Proteomics ; 15(4): 675-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25367296

RESUMO

Current models of early mouse development assign roles to stochastic processes and epigenetic regulation, which are considered to be as influential as the genetic differences that exist between strains of the species Mus musculus. The aim of this study was to test whether mouse oocytes vary from each other in the abundance of gene products that could influence, prime, or even predetermine developmental trajectories and features of derivative embryos. Using the paradigm of inbred mouse strains, we quantified 2010 protein groups (SILAC LC-MS/MS) and 15205 transcripts (RNA deep sequencing) present simultaneously in oocytes of four strains tested (129/Sv, C57Bl/6J, C3H/HeN, DBA/2J). Oocytes differed according to donor strain in the abundance of catalytic and regulatory proteins, as confirmed for a subset (bromodomain adjacent to zinc finger domain, 1B [BAZ1B], heme oxygenase 1 [HMOX1], estrogen related receptor, beta [ESRRB]) via immunofluorescence in situ. Given a Pearson's r correlation coefficient of 0.18-0.20, the abundance of oocytic proteins could not be predicted from that of cognate mRNAs. Our results document that a prerequisite to generate embryo diversity, namely the different abundances of maternal proteins in oocytes, can be studied in the model of inbred mouse strains. Thus, we highlight the importance of proteomic quantifications in modern embryology. All MS data have been deposited in the ProteomeXchange with identifier PXD001059 (http://proteomecentral.proteomexchange.org/dataset/PXD001059).


Assuntos
Embrião de Mamíferos/metabolismo , Camundongos Endogâmicos/embriologia , Oócitos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Animais , Embrião de Mamíferos/química , Desenvolvimento Embrionário/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Marcação por Isótopo , Masculino , Espectrometria de Massas , Camundongos , Oócitos/química , Oócitos/crescimento & desenvolvimento , Proteoma/química , Proteoma/genética , Proteômica , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma
3.
Mol Hum Reprod ; 21(2): 115-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25239944

RESUMO

The totipotent zygote gives rise to cells with differing identities during mouse preimplantation development. Many studies have focused on analyzing the spatio-temporal dependencies during these lineage decision processes and much has been learnt by tracing transgenic marker gene expression up to the blastocyst stage and by analyzing the effects of genetic manipulations (knockout/ overexpression) on embryo development. However, until recently, it has not been possible to get broader overviews on the gene expression networks that distinguish one cell from the other within the same embryo. With the advent of whole genome amplification methodology and microfluidics-based quantitative RT-PCR it became possible to generate transcriptomes of single cells. Here we review the current state of the art of single-cell transcriptomics applied to mouse preimplantation embryo blastomeres and summarize findings made by pioneering studies in recent years. Furthermore we use the PluriNetWork and ExprEssence to investigate cell transitions based on published data.


Assuntos
Blastômeros/metabolismo , Biologia Computacional/métodos , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/genética , Transcriptoma/fisiologia
4.
Reproduction ; 148(1): 55-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24686459

RESUMO

The long-standing view of 'immortal germline vs mortal soma' poses a fundamental question in biology concerning how oocytes age in molecular terms. A mainstream hypothesis is that maternal ageing of oocytes has its roots in gene transcription. Investigating the proteins resulting from mRNA translation would reveal how far the levels of functionally available proteins correlate with mRNAs and would offer novel insights into the changes oocytes undergo during maternal ageing. Gene ontology (GO) semantic analysis revealed a high similarity of the detected proteome (2324 proteins) to the transcriptome (22 334 mRNAs), although not all proteins had a cognate mRNA. Concerning their dynamics, fourfold changes of abundance were more frequent in the proteome (3%) than the transcriptome (0.05%), with no correlation. Whereas proteins associated with the nucleus (e.g. structural maintenance of chromosomes and spindle-assembly checkpoints) were largely represented among those that change in oocytes during maternal ageing; proteins associated with oxidative stress/damage (e.g. superoxide dismutase) were infrequent. These quantitative alterations are either impoverishing or enriching. Using GO analysis, these alterations do not relate in any simple way to the classic signature of ageing known from somatic tissues. Given the lack of correlation, we conclude that proteome analysis of mouse oocytes may not be surrogated with transcriptome analysis. Furthermore, we conclude that the classic features of ageing may not be transposed from somatic tissues to oocytes in a one-to-one fashion. Overall, there is more to the maternal ageing of oocytes than mere cellular deterioration exemplified by the notorious increase of meiotic aneuploidy.


Assuntos
Envelhecimento/metabolismo , Idade Materna , Oócitos/metabolismo , Proteínas/metabolismo , Proteômica , Envelhecimento/genética , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Mapas de Interação de Proteínas , Proteínas/genética , Proteômica/métodos , RNA Mensageiro/metabolismo
5.
Stem Cells ; 31(11): 2343-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23922292

RESUMO

The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.


Assuntos
Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Oócitos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Transferência Nuclear , Oócitos/citologia , Oócitos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Tetraploidia
6.
J Proteome Res ; 10(5): 2140-53, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21344949

RESUMO

The oocyte is the only cell of the body that can reprogram transplanted somatic nuclei and sets the gold standard for all reprogramming methods. Therefore, an in-depth characterization of its proteome holds promise to advance our understanding of reprogramming and germ cell biology. To date, limitations on oocyte numbers and proteomic technology have impeded this task, and the search for reprogramming factors has been conducted in embryonic stem (ES) cells instead. Here, we present the proteome of metaphase II mouse oocytes to a depth of 3699 proteins, which substantially extends the number of proteins identified until now in mouse oocytes and is comparable by size to the proteome of undifferentiated mouse ES cells. Twenty-eight oocyte proteins, also detected in ES cells, match the criteria of our multilevel approach to screen for reprogramming factors, namely nuclear localization, chromatin modification, and catalytic activity. Our oocyte proteome catalog thus advances the definition of the "reprogrammome", the set of molecules--proteins, RNAs, lipids, and small molecules--that enable reprogramming.


Assuntos
Reprogramação Celular/genética , Metáfase/genética , Oócitos/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Animais , Cromatografia Líquida , Biologia Computacional , Primers do DNA/genética , Células-Tronco Embrionárias/metabolismo , Feminino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Técnicas de Transferência Nuclear , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Nat Commun ; 9(1): 440, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382828

RESUMO

Master cell fate determinants are thought to induce specific cell lineages in gastrulation by orchestrating entire gene programs. The T-box transcription factor EOMES (eomesodermin) is crucially required for the development of the heart-yet it is equally important for endoderm specification suggesting that it may act in a context-dependent manner. Here, we define an unrecognized interplay between EOMES and the WNT signaling pathway in controlling cardiac induction by using loss and gain-of-function approaches in human embryonic stem cells. Dose-dependent EOMES induction alone can fully replace a cocktail of signaling molecules otherwise essential for the specification of cardiogenic mesoderm. Highly efficient cardiomyocyte programming by EOMES mechanistically involves autocrine activation of canonical WNT signaling via the WNT3 ligand, which necessitates a shutdown of this axis at a subsequent stage. Our findings provide insights into human germ layer induction and bear biotechnological potential for the robust production of cardiomyocytes from engineered stem cells.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes/citologia , Proteínas com Domínio T/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Humanas/citologia , Humanos , Mesoderma , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt , Proteína Wnt3/metabolismo
8.
Cell Stem Cell ; 18(3): 341-53, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26748419

RESUMO

Cardiac induction requires stepwise integration of BMP and WNT pathway activity. Human embryonic stem cells (hESCs) are developmentally and clinically relevant for studying the poorly understood molecular mechanisms downstream of these cascades. We show that BMP and WNT signaling drive cardiac specification by removing sequential roadblocks that otherwise redirect hESC differentiation toward competing fates, rather than activating a cardiac program per se. First, BMP and WNT signals pattern mesendoderm through cooperative repression of SOX2, a potent mesoderm antagonist. BMP signaling promotes miRNA-877 maturation to induce SOX2 mRNA degradation, while WNT-driven EOMES induction transcriptionally represses SOX2. Following mesoderm formation, cardiac differentiation requires inhibition of WNT activity. We found that WNT inhibition serves to restrict expression of anti-cardiac regulators MSX1 and CDX2/1. Conversely, their simultaneous disruption partially abrogates the requirement for WNT inactivation. These results suggest that human cardiac induction depends on multi-stage repression of alternate lineages, with implications for deriving expandable cardiac stem cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas/metabolismo , Miócitos Cardíacos/metabolismo , Via de Sinalização Wnt , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Linhagem Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
9.
PLoS One ; 9(5): e97199, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24836291

RESUMO

Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24-36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1) and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.


Assuntos
Reprogramação Celular/fisiologia , Clonagem de Organismos/métodos , Replicação do DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oócitos/fisiologia , Animais , Citocinese/fisiologia , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/metabolismo , Reação em Cadeia da Polimerase , Injeções de Esperma Intracitoplásmicas
10.
PLoS One ; 7(6): e36850, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693623

RESUMO

While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.


Assuntos
Reprogramação Celular/fisiologia , Mitocôndrias/metabolismo , Oócitos/citologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Reprogramação Celular/genética , Microscopia Crioeletrônica , Feminino , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/imunologia , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Oócitos/ultraestrutura
12.
Int J Dev Biol ; 54(11-12): 1649-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21136379

RESUMO

Cloned mouse embryo development to blastocyst stage correlates positively with the expression level of Oct4 (Pou5f1) at the morula stage, as reported previously by our laboratory. However, whether this correlation is based on a cause-effect relationship has remained unclear. To address this question, we artificially increased the level of Oct4 prior and subsequent to somatic cell nuclear transfer, by microinjection of Oct4 mRNA into ooplasts and by transgenic Oct4 induction at the morula stage, respectively. We observed higher developmental rates of cloned embryos to blastocyst when higher levels of Oct4 were superimposed with the initial reprogramming events; whereas increasing Oct4 at later stages of preimplantation development did not have a significant effect on developmental rates. Our results show that supplemental Oct4 facilitates oocyte-mediated reprogramming only during the first cleavages, implying that the higher Oct4 level observed in developmentally competent cloned morulae is a readout of reprogramming events that successfully took place earlier.


Assuntos
Reprogramação Celular/genética , Embrião de Mamíferos/metabolismo , Mórula/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Blastocisto/metabolismo , Separação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mórula/metabolismo , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/genética , Reação em Cadeia da Polimerase , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA