Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 190(9): 3374-80, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18296519

RESUMO

The genome of Pseudomonas putida KT2440 encodes only five recognizable proteins belonging to the phosphoenolpyruvate (PEP)-carbohydrate phosphotransferase system (PTS). Two of these PTS constituents (FruA and FruB) form a complete system for fructose intake. The other three products, encoded by ptsP (EI(Ntr)), ptsO (NPr), and ptsN (EIIA(Ntr)), comprise a branch of the system unrelated to sugar traffic but thought to have an influence on coordination of N and C metabolism. We used a genetic approach to clarify the course of high-energy phosphate through this reduced set of PTS proteins. To this end, we monitored the phosphorylation state in vivo of the EIIA(Ntr) enzyme in various genetic backgrounds and growth conditions. Our results show that the source of phosphate available to the system is PEP and that the primary flow of phosphate through the N/C-sensing PTS proceeds from PEP to EI(Ntr) to NPr to EIIA(Ntr). We also found that in the presence of fructose, unlike in the presence of succinate, EIIA(Ntr) can be phosphorylated in a ptsP strain but not in a ptsP fruB double mutant. This result revealed that the fructose transport system has the ability to cross talk in vivo with the N-related PTS branch. The data reported here thus document an unexpected connection in vivo between the sugar-dependent and sugar-independent PTSs.


Assuntos
Proteínas de Bactérias/metabolismo , Frutose/metabolismo , Nitrogênio/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Pseudomonas putida/enzimologia , Proteínas de Bactérias/genética , Meios de Cultura , Fosfatos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Estrutura Terciária de Proteína , Pseudomonas putida/genética
2.
FEMS Microbiol Lett ; 277(1): 44-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17986083

RESUMO

The genes encoding the three subunits of the primary ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 were cloned in an expression vector (pBAD24) and transformed into the glycine betaine transport-negative mutant Escherichia coli MKH13. Ota was produced as demonstrated by Western blotting. Uptake studies revealed that Ota catalyzed the transport of glycine betaine in E. coli MKH13(pBAD-Ota) with a K(m) of 10+/-5 microM and a maximal velocity of 1.5+/-0.5 nmol min(-1) mg protein(-1). Transport was ATP dependent. Ota was activated by salinity gradients, but only marginally by sugar gradients across the membrane. Glycine betaine transport was inhibited to a small extent by an excess of dimethylglycin or proline betaine, but not by sarcosine or glycine.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Cloreto de Sódio/farmacologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Betaína/metabolismo , Clonagem Molecular , Meios de Cultura , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Cinética , Methanosarcina/efeitos dos fármacos , Methanosarcina/genética , Methanosarcina/metabolismo
3.
FEMS Microbiol Lett ; 277(1): 79-89, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17986088

RESUMO

Methanosarcina mazei is a nonhalophilic methanogen that can adapt to 800 mM NaCl. Microarray studies have been used to examine the effect of elevated salinities on the regulation of gene expression in M. mazei. Eighty-four genes of different functional categories, such as solute transport and biosynthesis, Na(+) export, stress response, ion, protein and phosphate transport, metabolic enzymes, regulatory proteins, DNA-modification systems, and cell-surface modulators, were found to be stronger expressed at high salinities. Moreover, 10 genes encoding different metabolic functions including potassium uptake and ATP synthesis were reduced in expression under high salt. The overall expression profiles suggest that M. mazei is able to adapt to high salinities by multiple upregulation of many different cellular functions including protective pathways such as solute transport and biosynthesis, import of phosphate, export of Na(+), and upregulation of pathways for modification of DNA and cell surface architecture.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Methanosarcina/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Cloreto de Sódio/farmacologia , Adaptação Fisiológica , Proteínas Arqueais/genética , Perfilação da Expressão Gênica , Genoma Arqueal , Methanosarcina/genética , Methanosarcina/metabolismo , Methanosarcina/fisiologia , Reação em Cadeia da Polimerase , Equilíbrio Hidroeletrolítico
4.
J Microbiol Methods ; 71(3): 179-85, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17900723

RESUMO

Analysis of the native proteome of bacterial cells typically involves physical procedures (sonication, French press) and/or biochemical methods (treatment with lysozyme, osmotic shock etc.) to break open the bacteria to yield a soluble protein fraction. Such procedures are not only time consuming, but they change bacterial physiology during manipulation and affect labile post-translational modifications such as His-P bonds. In this work, we document the efficacy of the dielectric breakdown of live bacteria for releasing and delivering the protein contents of intact cells directly into a non-denaturing gel system. By means of such an in situ electrophoresis, the protein pool enters the separation medium without any manipulation of the cells other than being exposed to a moderate electric voltage. To validate the method we have followed the fate of the two forms of the PtsN (EIIA(Ntr)) protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) of Pseudomonas putida through the various stages of the procedure. Apart of detecting the corresponding polypeptides, we show that this procedure releases the bulk of the proteome while keeping unharmed the phosphorylation state of EIIA(Ntr) as it was present in the cells prior to applying the electric field. The method is applicable to other bacteria as well.


Assuntos
Proteínas de Bactérias/metabolismo , Eletroquímica , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/fisiologia , Pseudomonas putida/metabolismo , Proteínas de Bactérias/fisiologia , Membrana Celular/fisiologia , Eletricidade , Eletroforese em Gel Bidimensional/métodos , Regulação Bacteriana da Expressão Gênica , Microscopia Eletrônica de Varredura , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Pseudomonas putida/enzimologia
5.
J Biol Chem ; 282(25): 18206-18211, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17478425

RESUMO

The nitrogen-related branch of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) of Pseudomonas putida includes the ptsN gene encoding the EIINtr (PtsN) enzyme. Although the implication of this protein in a variety of cellular functions has been observed in diverse bacteria, the physiological signals that bring about phosphorylation/dephosphorylation of the PtsN protein are not understood. This work documents the phosphorylation status of the EIINtr enzyme of P. putida at various growth stages in distinct media. Culture conditions were chosen to include fructose (the uptake of which is controlled by the PTS) or glucose (a non-PTS sugar in P. putida) in minimal medium with casamino acids, ammonia, or nitrate as alternative nitrogen sources. To quantify the relative ratio of PtsN/PtsN approximately P in live cells, we resorted to the in situ electrophoresis of whole bacteria expressing an E-epitope-tagged EIINtr followed by the fractionation of the thereby released native proteome in a non-denaturing gel. Although the PtsN species phosphorylated in amino acid His68 was detected under virtually all growth scenarios, the relative levels of the non-phosphorylated form varied dramatically depending on the growth phase and the nutrients available in the medium. The share of phosphorylated PtsN increased along growth in a fashion apparently independent of any trafficking of sugars. The large variations of non-phosphorylated PtsN in different growth conditions, in contrast to the systematic excess of the phosphorylated PtsN form, suggested that the P-free PtsN is the predominant signaling species of the protein.


Assuntos
Proteínas de Bactérias/fisiologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/fisiologia , Pseudomonas putida/enzimologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma , Glucose/metabolismo , Modelos Biológicos , Modelos Genéticos , Nitrogênio/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Plasmídeos/metabolismo , Proteômica/métodos , Fator sigma
6.
J Bacteriol ; 189(12): 4529-33, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17416664

RESUMO

The genome of Pseudomonas putida KT2440 encodes five proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Two of these (FruA and FruB) form a dedicated system for fructose intake, while enzyme I(Ntr) (EI(Ntr); encoded by ptsP), NPr (ptsO), and EII(Ntr) (ptsN) act in concert to control the intracellular accumulation of polyhydroxyalkanoates, a typical product of carbon overflow.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Carboxílicos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Mutagênese Insercional , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA