Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 18(10): 3741-3749, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34460254

RESUMO

The pharmacokinetic profile of AAV particles following intrathecal delivery has not yet been clearly defined. The present study evaluated the distribution profile of adeno-associated virus serotype 5 (AAV5) viral vectors following lumbar intrathecal injection in mice. After a single bolus intrathecal injection, viral DNA concentrations in mouse whole blood, spinal cord, and peripheral tissues were determined using quantitative polymerase chain reaction (qPCR). The kinetics of AAV5 vector in whole blood and the concentration over time in spinal and peripheral tissues were analyzed. Distribution of the AAV5 vector to all levels of the spinal cord, dorsal root ganglia, and into systemic circulation occurred rapidly within 30 min following injection. Vector concentration in whole blood reached a maximum 6 h postinjection with a half-life of approximately 12 h. Area under the curve data revealed the highest concentration of vector distributed to dorsal root ganglia tissue. Immunohistochemical analysis revealed AAV5 particle colocalization with the pia mater at the spinal cord and macrophages in the dorsal root ganglia (DRG) 30 min after injection. These results demonstrate the widespread distribution of AAV5 particles through cerebrospinal fluid and preferential targeting of DRG tissue with possible clearance mechanisms via DRG macrophages.


Assuntos
Dependovirus , Vetores Genéticos/farmacocinética , Animais , DNA Viral/análise , DNA Viral/sangue , Feminino , Vetores Genéticos/administração & dosagem , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/química , Distribuição Tecidual , Transdução Genética/métodos
2.
Front Pain Res (Lausanne) ; 4: 1269017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405182

RESUMO

Agmatine, a decarboxylated form of L-arginine, prevents opioid analgesic tolerance, dependence, and self-administration when given by both central and systemic routes of administration. Endogenous agmatine has been previously detected in the central nervous system. The presence of a biochemical pathway for agmatine synthesis offers the opportunity for site-specific overexpression of the presumptive synthetic enzyme for local therapeutic effects. In the present study, we evaluated the development of opioid analgesic tolerance in ICR-CD1 mice pre-treated with either vehicle control or intrathecally delivered adeno-associated viral vectors (AAV) carrying the gene for human arginine decarboxylase (hADC). Vehicle-treated or AAV-hADC-treated mice were each further divided into two groups which received repeated delivery over three days of either saline or systemically-delivered morphine intended to induce opioid analgesic tolerance. Morphine analgesic dose-response curves were constructed in all subjects on day four using the warm water tail flick assay as the dependent measure. We observed that pre-treatment with AAV-hADC prevented the development of analgesic tolerance to morphine. Peripheral and central nervous system tissues were collected and analyzed for presence of hADC mRNA. In a similar experiment, AAV-hADC pre-treatment prevented the development of analgesic tolerance to a high dose of the opioid neuropeptide endomorphin-2. Intrathecal delivery of anti-agmatine IgG (but not normal IgG) reversed the inhibition of endomorphin-2 analgesic tolerance in AAV-hADC-treated mice. To summarize, we report here the effects of AAV-mediated gene transfer of human ADC (hADC) in models of opioid-induced analgesic tolerance. This study suggests that gene therapy may contribute to reducing opioid analgesic tolerance.

3.
Methods Mol Biol ; 1937: 305-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706406

RESUMO

Delivery of viral vectors directly into the central nervous system (CNS) has emerged as an important tool for the refinement of gene therapy. Intrathecal delivery by direct lumbar puncture in conscious rodents offers a minimally invasive approach that avoids tissue damage and/or destruction. Here we describe delivery of small quantities of viral vector product to the intrathecal space of rodents via direct lumbar puncture aided by a catheter.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Punção Espinal/instrumentação , Animais , Catéteres , Feminino , Terapia Genética , Humanos , Injeções Espinhais , Camundongos , Punção Espinal/métodos
4.
Neurosci Lett ; 487(2): 177-81, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20951763

RESUMO

Both hemispheric bias and sex differences exist in striatal-mediated behaviors and pathologies. The extent to which these dimorphisms can be attributed to an underlying neuroanatomical difference is unclear. We therefore quantified neuron soma size and density in the dorsal striatum (CPu) as well as the core (AcbC) and shell (AcbS) subregions of the nucleus accumbens to determine whether these anatomical measurements differ by region, hemisphere, or sex in adult Sprague-Dawley rats. Neuron soma size was larger in the CPu than the AcbC or AcbS. Neuron density was greatest in the AcbS, intermediate in the AcbC, and least dense in the CPu. CPu neuron density was greater in the left in comparison to the right hemisphere. No attribute was sexually dimorphic. These results provide the first evidence that hemispheric bias in the striatum and striatal-mediated behaviors can be attributed to a lateralization in neuronal density within the CPu. In contrast, sexual dimorphisms appear mediated by factors other than gross anatomical differences.


Assuntos
Tamanho Celular , Corpo Estriado/citologia , Neurônios/citologia , Núcleo Accumbens/citologia , Caracteres Sexuais , Animais , Contagem de Células/métodos , Corpo Estriado/crescimento & desenvolvimento , Feminino , Masculino , Neurônios/fisiologia , Núcleo Accumbens/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA