Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 304: 114294, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920282

RESUMO

On-site open burning is a common practice for handling rice straw, but its negative impacts, e.g., biomass loss and air pollution, are largely debated worldwide. To address the negative effects of open burning, many efforts have been made to 'ignite' worldwide bans. However, these bans are likely based on a singular view in which some positive aspects of open burning are overlooked. In this study, we aimed to determine the thermal-induced changes of straw and straw arsenic (As) under open burning and heat-treatments (in the temperature range from 300 to 900 °C). It was found that silica phase in rice straw (so-called phytolith) can encapsulate As in its structure. Open burning or heat-treatment of straw resulted in a tighter association of As and phytolith, thereby reducing dissolution of As. We proposed an opinion that open burning causes air pollution, but it can increase the activity of phytolith in sequestrating As, enabling delayed As cycle in rice ecosystems. The combat of on-site open burning of rice straw to reduce air pollution will alter straw handling routines, thereby changing the cycle of straw phytolith and the route of straw As.


Assuntos
Poluição do Ar , Arsênio , Oryza , Poluição do Ar/análise , Biomassa , Ecossistema
2.
Environ Res ; 186: 109545, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32361079

RESUMO

Dengue fever has continuously been a disease burden in Vietnam during the last 20 years, particularly in the Mekong Delta region (MDR), which is one of the most vulnerable to climate change. Variations in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue. This study focuses on assessing dengue risk via the vulnerability concept, which is composed of exposure and susceptibility using a combined approach of mapping and modelling for the MDR of Vietnam during the period between 2001 and 2016. Multisource remote sensing data from Global Satellite Mapping of Precipitation (GSMaP) and Moderate Resolution Imaging Spectrophotometer (MODIS) was used for presenting climate and environment variables in mapping and modelling vulnerability. Monthly and yearly maps of vulnerability to dengue in the MDR, produced for 15-year period, aided analysis of the temporal and spatial patterns of vulnerability to dengue in the study region and were used for constructing time-series modelling of vulnerability for the following year. The results showed that there is a clear seasonal variation in the vulnerability due to variability of the climate factor and its strong dispersion across the study region, with higher vulnerability in the scattered areas of urban and mixed horticulture land and lower vulnerability in areas covered by forest and bare soil lands. The Pearson's correlation was applied to evaluate the association between dengue rates and vulnerability values aggregated at the provincial level. Reasonable linear association, with correlation coefficients of 0.41-0.63, was found in two-thirds of the provinces. The predicted vulnerabilities to dengue during 2016 were comparable with the estimated values and trends for most provinces of the MDR. Our demonstrated approach with integrated geospatial data seems to be a promising tool in supporting the public health sector in assessing potential space and time of a subsequent increase in vulnerability to dengue, particularly in the context of climate change.


Assuntos
Dengue , Mudança Climática , Dengue/epidemiologia , Humanos , Incidência , Estações do Ano , Vietnã/epidemiologia
3.
Sci Total Environ ; 738: 139844, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526417

RESUMO

Fine-sized biochars and clay minerals co-present in various circumstances, e.g., agricultural land and water treatment. Because both of these materials are scavengers for nutrients, agrochemicals and other toxicants, their dispersibility and transportability have received much attention. However, little is documented about their colloidal interactions and to what extent biochar particles can stimulate the dispersion of clay minerals. Here, the effect of engineered micro-sized biochar amendment on the surface charge (SC) and colloidal dynamics of the clay fraction of a kaolinite-rich soil was determined. The engineered biochars showed distinctive SC and colloidal properties depending on their pyrolysis conditions (e.g., oxygen level and temperature) and solution chemistry (i.e., pH and cation type). Two types of biochars prepared under non-biochar-oriented pyrolysis (open heating, 'O-biochar') and biochar-oriented pyrolysis (N2-supported heating, 'N2-biochar') showed contrasting effects on the colloidal dynamics of clay. The O-biochars provoked aggregation due to their higher content of soluble salts, which increased ionic strength and provided multivalent cations, inducing bridging between negatively charged colloids. In contrast, the N2 biochars low in soluble salts and rich in negatively charged burned organic matter compounds favoured the dispersion of clay. The adjustment of biochar production methods can therefore be highlighted as the way to customize biochar for specific uses or to reduce the risk of clay loss from soils in the short term. In the long term, when soluble salts are removed by leaching, it is likely that dispersion is facilitated and the risk for erosion increases.


Assuntos
Argila , Solo , Carvão Vegetal , Caulim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA