Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chall ; 3(9): 1900027, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31565398

RESUMO

Developing an air electrode with high efficiency and stable performance is essential to improve the energy conversion efficiency and lifetime of zinc-air battery. Herein, Ni3Pt alloy is deposited on 3D nickel foam by a pulsed laser deposition method, working as a stable binder-free air electrode for rechargeable zinc-air batteries. The polycrystalline Ni3Pt alloy possesses high oxygen-conversion catalytic activity, which is highly desirable for the charge and discharge process in zinc-air battery. Meanwhile, this sample technique constructs an integrated and stable electrode structure, which not only has a 3D architecture of high conductivity and porosity but also produces a uniform Ni3Pt strongly adhering to the substrate, favoring rapid gas and electrolyte diffusion throughout the whole energy conversion process. Employed as an air electrode in zinc-air batteries, it exhibits a small charge and discharge gap of below 0.62 V at 10 mA cm-2, with long cycle life of 478 cycles under 10 min per cycle. Furthermore, benefitting from the structural advantages, a flexible device exhibits similar electrochemical performance even under the bending state. The high performance resulting from this type of integrated electrode in this work paves the way of a promising technique to fabricate air electrodes for zinc-air batteries.

2.
ACS Nano ; 11(2): 1747-1754, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28128929

RESUMO

The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg-1), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt3Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt3Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt3Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g-1 along with an 84% conversion efficiency at a current density of 0.2 mA cm-2, and when the current density increased to 0.8 mA cm-2, the discharge capacity is still greater than 3500 mAh g-1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA