Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 32(41): 10744-10751, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27718587

RESUMO

The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 µg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.

2.
Appl Microbiol Biotechnol ; 99(16): 6831-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25895086

RESUMO

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture. It was found that the attachment of S. aureus cells was not restricted on surfaces that had an average roughness (S a) less than 0.5 nm. In contrast, P. aeruginosa cells were found to be unable to colonise surfaces possessing an average roughness below 1 nm, unless sharp nanoprotrusions of approximately 20 nm in size and spaced 35.0 nm apart were present. It is postulated that the enhanced attachment of P. aeruginosa onto the surfaces possessing these nanoprotrusions was facilitated by the ability of the cell membrane to stretch over the tips of the nanoprotrusions as confirmed through computer simulation, together with a concomitant increase in the level of extracellular polymeric substance (EPS) being produced by the bacterial cells.


Assuntos
Aderência Bacteriana , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Propriedades de Superfície , Titânio , Humanos , Microscopia de Força Atômica
3.
Nanoscale ; 10(11): 5089-5096, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29461559

RESUMO

Wrinkled patterns, which possess an extensive surface area over a limited planar space, can provide surface features ranging across the nano- and microscale that have become an engineering material with the flexibility to be tuneable for a number of technologies. Here, we investigate the surface parameters that influence the attachment response of two model bacteria (P. aeruginosa and S. aureus) to wrinkled gold-coated polystyrene surfaces having topologies at the nano- and microscale. Together with flat gold films as the controls, surface feature heights spanned 2 orders of magnitude (15 nm, 200 nm, and 1 micron). The surface wrinkle topology was shown through confocal laser scanning microscopic, atomic force microscopic and scanning electron microscopic image analyses to consist of air-water interfacial areas unavailable for bacterial attachment, which were also shown to be stable by time-lapsed contact angle measurements. Imposition of the nanoscale wrinkles reduced P. aeruginosa attachment to 57% and S. aureus attachment to 20% of their flat equivalent surfaces whereas wrinkles at the microscale further reduced these attachments to 7.5% and 14.5%, respectively. The density of attachments indicated an inherent species specific selectivity that changed with feature dimension, attributable to the scale of the air-water interfaces in contact with the bacterial cell. Parameters influencing static bacterial attachment were the total projected surface areas minus the air-water interface areas and the scale of these respective air-water interfaces (area distribution) with respect to the cell morphology. The range of these controlling parameters may provide new design principles for the evolving suite of physical anti-biofouling materials not reliant on biocidal agents under development.


Assuntos
Aderência Bacteriana , Incrustação Biológica , Ouro , Poliestirenos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
4.
Sci Rep ; 7(1): 10798, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883444

RESUMO

The effect of red blood cells (RBC) exposed to an 18 GHz electromagnetic field (EMF) was studied. The results of this study demonstrated for the first time that exposure of RBCs to 18 GHz EMF has the capacity to induce nanospheres uptake in RBCs. The uptake of nanospheres (loading efficiency 96% and 46% for 23.5 and 46.3 nm nanospheres respectively), their presence and locality were confirmed using three independent techniques, namely scanning electron microscopy, confocal laser scanning microscopy and transmission electron microscopy. It appeared that 23.5 nm nanospheres were translocated through the membrane into the cytosol, while the 46.3 nm-nanospheres were mostly translocated through the phospholipid-cholesterol bilayer, with only some of these nanospheres passing the 2D cytoskeleton network. The nanospheres uptake increased by up to 12% with increasing temperature from 33 to 37 °C. The TEM analysis revealed that the nanospheres were engulfed by the cell membrane itself, and then translocated into the cytosol. It is believed that EMF-induced rotating water dipoles caused disturbance of the membrane, initiating its deformation and result in an enhanced degree of membrane trafficking via a quasi-exocytosis process.


Assuntos
Campos Eletromagnéticos , Eritrócitos/efeitos da radiação , Micro-Ondas , Animais , Eritrócitos/citologia , Eritrócitos/ultraestrutura , Microscopia Eletrônica de Varredura , Coelhos
5.
Sci Rep ; 7(1): 15902, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162884

RESUMO

Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.


Assuntos
Bactérias/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Polímeros/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Biodiversidade , Contagem de Colônia Microbiana , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Porosidade , Análise de Componente Principal , Microbiologia do Solo
6.
PLoS One ; 11(7): e0158135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391488

RESUMO

The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.


Assuntos
Campos Eletromagnéticos , Saccharomyces cerevisiae/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Membrana Celular/metabolismo , Ácidos Graxos/química , Lipídeos/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Micro-Ondas , Nanosferas/química , Permeabilidade , Propídio/química , Doses de Radiação
7.
ACS Appl Mater Interfaces ; 8(34): 22025-31, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27494044

RESUMO

With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants.


Assuntos
Células Eucarióticas , Antibacterianos , Nanoestruturas , Pseudomonas aeruginosa , Staphylococcus aureus , Propriedades de Superfície
8.
Sci Rep ; 5: 16817, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26576662

RESUMO

Titanium and its alloys remain the most popular choice as a medical implant material because of its desirable properties. The successful osseointegration of titanium implants is, however, adversely affected by the presence of bacterial biofilms that can form on the surface, and hence methods for preventing the formation of surface biofilms have been the subject of intensive research over the past few years. In this study, we report the response of bacteria and primary human fibroblasts to the antibacterial nanoarrays fabricated on titanium surfaces using a simple hydrothermal etching process. These fabricated titanium surfaces were shown to possess selective bactericidal activity, eliminating almost 50% of Pseudomonas aeruginosa cells and about 20% of the Staphylococcus aureus cells coming into contact with the surface. These nano-patterned surfaces were also shown to enhance the aligned attachment behavior and proliferation of primary human fibroblasts over 10 days of growth. These antibacterial surfaces, which are capable of exhibiting differential responses to bacterial and eukaryotic cells, represent surfaces that have excellent prospects for biomedical applications.


Assuntos
Antibacterianos , Nanoestruturas , Titânio , Antibacterianos/química , Linhagem Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis , Fibroblastos , Humanos , Nanoestruturas/química , Nanofios/química , Próteses e Implantes , Pseudomonas aeruginosa , Staphylococcus aureus , Propriedades de Superfície , Titânio/química
9.
ACS Nano ; 9(8): 8458-67, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26166486

RESUMO

Pristine graphene, its derivatives, and composites have been widely reported to possess antibacterial properties. Most of the studies simulating the interaction between bacterial cell membranes and the surface of graphene have proposed that the graphene-induced bacterial cell death is caused either by (1) the insertion of blade-like graphene-based nanosheets or (2) the destructive extraction of lipid molecules by the presence of the lipophilic graphene. These simulation studies have, however, only take into account graphene-cell membrane interactions where the graphene is in a dispersed form. In this paper, we report the antimicrobial behavior of graphene sheet surfaces in an attempt to further advance the current knowledge pertaining to graphene cytotoxicity using both experimental and computer simulation approaches. Graphene nanofilms were fabricated to exhibit different edge lengths and different angles of orientation in the graphene sheets. These substrates were placed in contact with Pseudomonas aeruginosa and Staphylococcus aureus bacteria, where it was seen that these substrates exhibited variable bactericidal efficiency toward these two pathogenic bacteria. It was demonstrated that the density of the edges of the graphene was one of the principal parameters that contributed to the antibacterial behavior of the graphene nanosheet films. The study provides both experimental and theoretical evidence that the antibacterial behavior of graphene nanosheets arises from the formation of pores in the bacterial cell wall, causing a subsequent osmotic imbalance and cell death.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Grafite/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Membrana Celular/ultraestrutura , Simulação por Computador , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/ultraestrutura , Análise Espectral Raman , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura , Propriedades de Superfície
10.
AMB Express ; 4(1): 3, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24410821

RESUMO

The design of biomaterial surfaces relies heavily on the ability to accurately measure and visualize the three-dimensional surface nanoarchitecture of substrata. Here, we present a technique for producing three-dimensional surface models using displacement maps that are based on the data obtained from two-dimensional analyses. This technique is particularly useful when applied to scanning electron micrographs that have been calibrated using atomic force microscopy (AFM) roughness data. The evaluation of four different surface types, including thin titanium films, silicon wafers, polystyrene cell culture dishes and dragonfly wings confirmed that this technique is particularly effective for the visualization of conductive surfaces such as metallic titanium. The technique is particularly useful for visualizing surfaces that cannot be easily analyzed using AFM. The speed and ease with which electron micrographs can be recorded, combined with a relatively simple process for generating displacement maps, make this technique useful for the assessment of the surface topography of biomaterials.

11.
J Mater Chem B ; 2(19): 2819-2826, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261476

RESUMO

Microscale devices are increasingly being developed for diagnostic analysis although conventional lysis as an initial step presents limitations due to its scale or complexity. Here, we detail the physical response of erythrocytes to the surface nanoarchitecture of black Si (bSi) and foreshadow their potential in microanalysis. The physical interaction brought about by the spatial convergence of the two topologies: (a) the nanopillar array present on the bSi and (b) the erythrocyte cytoskeleton present on the red blood cells (RBCs), provides spontaneous stress-induced cell deformation, rupture and passive lysis within an elapsed time of ∼3 min from immobilisation to rupture and without external chemical or mechanical intervention. The mechano-responsive bSi surface provides highly active yet autogenous RBC lysis and a prospect as a front-end platform technology in evolving micro-fluidic platforms for cellular analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA