Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 176: 105940, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470499

RESUMO

Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Sistema Nervoso Central , Inflamação , Neurônios , Microglia
2.
J Neuroinflammation ; 20(1): 221, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777791

RESUMO

BACKGROUND: Receptor-interacting protein kinase 2 (RIPK2) is a serine/threonine kinase whose activity propagates inflammatory signaling through its association with pattern recognition receptors (PRRs) and subsequent TAK1, NF-κB, and MAPK pathway activation. After stroke, dead and dying cells release a host of damage-associated molecular patterns (DAMPs) that activate PRRs and initiate a robust inflammatory response. We hypothesize that RIPK2 plays a damaging role in the progression of stroke injury by enhancing the neuroinflammatory response to stroke and that global genetic deletion or microglia-specific conditional deletion of Ripk2 will be protective following ischemic stroke. METHODS: Adult (3-6 months) male mice were subjected to 45 min of transient middle cerebral artery occlusion (tMCAO) followed by 24 h, 48 h, or 28 days of reperfusion. Aged male and female mice (18-24 months) were subjected to permanent ischemic stroke and sacrificed 48 h later. Infarct volumes were calculated using TTC staining (24-48 h) or Cresyl violet staining (28d). Sensorimotor tests (weight grip, vertical grid, and open field) were performed at indicated timepoints. Blood-brain barrier (BBB) damage, tight junction proteins, matrix metalloproteinase-9 (MMP-9), and neuroinflammatory markers were assessed via immunoblotting, ELISA, immunohistochemistry, and RT-qPCR. Differential gene expression profiles were generated through bulk RNA sequencing and nanoString®. RESULTS: Global genetic deletion of Ripk2 resulted in decreased infarct sizes and reduced neuroinflammatory markers 24 h after stroke compared to wild-type controls. Ripk2 global deletion also improved both acute and long-term behavioral outcomes with powerful effects on reducing infarct volume and mortality at 28d post-stroke. Conditional deletion of microglial Ripk2 (mKO) partially recapitulated our results in global Ripk2 deficient mice, showing reductive effects on infarct volume and improved behavioral outcomes within 48 h of injury. Finally, bulk transcriptomic profiling and nanoString data demonstrated that Ripk2 deficiency in microglia decreases genes associated with MAPK and NF-κB signaling, dampening the neuroinflammatory response after stroke injury by reducing immune cell activation and peripheral immune cell invasion. CONCLUSIONS: These results reveal a hitherto unknown role for RIPK2 in the pathogenesis of ischemic stroke injury, with microglia playing a distinct role. This study identifies RIPK2 as a potent propagator of neuroinflammatory signaling, highlighting its potential as a therapeutic target for post-stroke intervention.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Camundongos , Masculino , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Infarto , AVC Isquêmico/metabolismo , Proteínas Quinases/metabolismo , Isquemia Encefálica/metabolismo
3.
Glia ; 68(11): 2228-2245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32275335

RESUMO

During aging humans lose midbrain dopamine neurons, but not all dopamine regions exhibit vulnerability to neurodegeneration. Microglia maintain tissue homeostasis and neuronal support, but microglia become senescent and likely lose some of their functional abilities. Since aging is the greatest risk factor for Parkinson's disease, we hypothesized that aging-related changes in microglia and neurons occur in the vulnerable substantia nigra pars compacta (SNc) but not the ventral tegmental area (VTA). We conducted stereological analyses to enumerate microglia and dopaminergic neurons in the SNc and VTA of 1-, 6-, 9-, 18-, and 24-month-old C57BL/J6 mice using sections double-stained with tyrosine hydroxylase (TH) and Iba1. Both brain regions show an increase in microglia with aging, whereas numbers of TH+ cells show no significant change after 9 months of age in SNc and 6 months in VTA. Morphometric analyses reveal reduced microglial complexity and projection area while cell body size increases with aging. Contact sites between microglia and dopaminergic neurons in both regions increase with aging, suggesting increased microglial support/surveillance of dopamine neurons. To assess neurotrophin expression in dopaminergic neurons, BDNF and TH mRNA were quantified. Results show that the ratio of BDNF to TH decreases in the SNc, but not the VTA. Gait analysis indicates subtle, aging-dependent changes in gait indices. In conclusion, increases in microglial cell number, ratio of microglia to dopamine neurons, and contact sites suggest that innate biological mechanisms compensate for the aging-dependent decline in microglia morphological complexity (senescence) to ensure continued neuronal support in the SNc and VTA.


Assuntos
Microglia , Substância Negra , Área Tegmentar Ventral , Animais , Fator Neurotrófico Derivado do Encéfalo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Glia ; 66(9): 1915-1928, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29733459

RESUMO

The transactivator of transcription protein, HIV-1 Tat, is linked to neuroAIDS, where degeneration of dopamine neurons occurs. Using a mouse model expressing GFAP-driven Tat protein under doxycycline (Dox) regulation, we investigated microglial-neuronal interactions in the rostral substantia nigra pars compacta (SNc). Immunohistochemistry for microglia and tyrosine hydroxylase (TH) showed that the ratio of microglia to dopamine neurons is smaller in the SNc than in the ventral tegmental area (VTA) and that this difference is maintained following 7-day Dox exposure in wild type animals. Administration of Dox to wild types had no effect on microglial densities. In addressing the sensitivity of neurons to potentially adverse effects of HIV-1 Tat, we found that HIV-1 Tat exposure in vivo selectively decreased TH immunoreactivity in the SNc but not in the VTA, while levels of TH mRNA in the SNc remained unchanged. HIV-1 Tat induction in vivo did not alter the total number of neurons in these brain regions. Application of Tat (5 ng) into dopamine neurons with whole-cell patch pipette decreased spontaneous firing activity. Tat induction also produced a decline in microglial cell numbers, but no microglial activation. Thus, disappearance of dopaminergic phenotype is due to a loss of TH immunoreactivity rather than to neuronal death, which would have triggered microglial activation. We conclude that adverse effects of HIV-1 Tat produce a hypodopamine state by decreasing TH immunoreactivity and firing activity of dopamine neurons. Reduced microglial numbers after Tat exposure in vivo suggest impaired microglial functions and altered bidirectional interactions between dopamine neurons and microglia.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Microglia/metabolismo , Transmissão Sináptica/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Encéfalo/patologia , Encéfalo/virologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA , Dopamina/metabolismo , Neurônios Dopaminérgicos/virologia , HIV-1 , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Microglia/virologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Basic Clin Pharmacol Toxicol ; 133(5): 496-507, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36710070

RESUMO

Methamphetamine is a widely abused psychostimulant and one of the main targets of dopamine transporter (DAT). Methamphetamine reduces DAT-mediated dopamine uptake and stimulates dopamine efflux leading to increased synaptic dopamine levels many folds above baseline. Methamphetamine also targets DAT-expressing peripheral immune cells, reduces wound healing and increases infection susceptibility. Peripheral immune cells such as myeloid cells, B cells and T cells express DAT. DAT activity on monocytes and macrophages exhibits immune suppressive properties via an autocrine paracrine mechanism, where deletion or inhibition of DAT activity increases inflammatory responses. In this study, utilizing a mouse model of daily single dose of methamphetamine administration, we investigated the impact of the drug on DAT expression in peripheral immune cells. We found in methamphetamine-treated mice that DAT expression was down-regulated in most of the innate and adaptive immune cells. Methamphetamine did not increase or decrease the total number of innate and adaptive immune cells but changed their immunophenotype to low-DAT-expressing phenotype. Moreover, serum cytokine distributions were altered in methamphetamine-treated mice. Therefore, resembling its effect in the CNS, in the periphery, methamphetamine regulates DAT expression on peripheral immune cell subsets, potentially describing methamphetamine regulation of peripheral immunity.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Células Cultivadas
6.
Cells ; 12(2)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672204

RESUMO

The dopamine transporter (DAT) regulates the dimension and duration of dopamine transmission. DAT expression, its trafficking, protein-protein interactions, and its activity are conventionally studied in the CNS and within the context of neurological diseases such as Parkinson's Diseases and neuropsychiatric diseases such as drug addiction, attention deficit hyperactivity and autism. However, DAT is also expressed at the plasma membrane of peripheral immune cells such as monocytes, macrophages, T-cells, and B-cells. DAT activity via an autocrine/paracrine signaling loop regulates macrophage responses to immune stimulation. In a recent study, we identified an immunosuppressive function for DAT, where blockade of DAT activity enhanced LPS-mediated production of IL-6, TNF-α, and mitochondrial superoxide levels, demonstrating that DAT activity regulates macrophage immune responses. In the current study, we tested the hypothesis that in the DAT knockout mice, innate and adaptive immunity are perturbed. We found that genetic deletion of DAT (DAT-/-) results in an exaggerated baseline inflammatory phenotype in peripheral circulating myeloid cells. In peritoneal macrophages obtained from DAT-/- mice, we identified increased MHC-II expression and exaggerated phagocytic response to LPS-induced immune stimulation, suppressed T-cell populations at baseline and following systemic endotoxemia and exaggerated memory B cell expansion. In DAT-/- mice, norepinephrine and dopamine levels are increased in spleen and thymus, but not in circulating serum. These findings in conjunction with spleen hypoplasia, increased splenic myeloid cells, and elevated MHC-II expression, in DAT-/- mice further support a critical role for DAT activity in peripheral immunity. While the current study is only focused on identifying the role of DAT in peripheral immunity, our data point to a much broader implication of DAT activity than previously thought. This study is dedicated to the memory of Dr. Marc Caron who has left an indelible mark in the dopamine transporter field.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Camundongos , Animais , Dopamina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Knockout , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA