Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Evol ; 180: 103386, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209637

RESUMO

Morphological traits suggesting powerful jumping abilities are characteristic of early crown primate fossils. Because tree squirrels lack certain 'primatelike' grasping features but frequently travel on the narrow terminal branches of trees, they make a viable extant model for an early stage of primate evolution. Here, we explore biomechanical determinants of jumping performance in the arboreal Eastern gray squirrel (Sciurus carolinensis, n = 3) as a greater understanding of the biomechanical strategies that squirrels use to modulate jumping performance could inform theories of selection for increased jumping ability during early primate evolution. We assessed vertical jumping performance by using instrumented force platforms upon which were mounted launching supports of various sizes, allowing us to test the influence of substrate diameter on jumping kinetics and performance. We used standard ergometric methods to quantify jumping parameters (e.g., takeoff velocity, total displacement, peak mechanical power) from force platform data during push-off. We found that tree squirrels display divergent mechanical strategies according to the type of substrate, prioritizing force production on flat ground versus center of mass displacement on narrower poles. As jumping represents a significant part of the locomotor behavior of most primates, we suggest that jumping from small arboreal substrates may have acted as a potential driver of the selection for elongated hindlimb segments in primates, allowing the center of mass to be accelerated over a longer distance-and thereby reducing the need for high substrate reaction forces.


Assuntos
Primatas , Sciuridae , Animais , Fenômenos Biomecânicos , Locomoção
2.
J Exp Biol ; 223(Pt 12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414871

RESUMO

Arboreal environments present considerable biomechanical challenges for animals moving and foraging among substrates varying in diameter, orientation and compliance. Most studies of quadrupedal gait kinematics in primates and other arboreal mammals have focused on symmetrical walking gaits and the significance of diagonal sequence gaits. Considerably less research has examined asymmetrical gaits, despite their prevalence in small-bodied arboreal taxa. Here, we examined whether and how free-ranging callitrichine primates adjust asymmetrical gait kinematics to changes in substrate diameter and orientation, as well as how variation in gait kinematics affects substrate displacement. We used high-speed video to film free-ranging Saguinus tripartitus and Cebuella pygmaea inhabiting the Tiputini Biodiversity Station, Ecuador. We found that S. tripartitus used bounding and half-bounding gaits on larger substrates versus gallops and symmetrical gaits on smaller substrates, and also shifted several kinematic parameters consistent with attenuating forces transferred from the animal to the substrate. Similarly, C. pygmaea shifted from high-impact bounding gaits on larger substrates to using more half-bounding gaits on smaller substrates; however, kinematic adjustments to substrate diameter were not as profound as in S. tripartitus Both species adjusted gait kinematics to changes in substrate orientation; however, gait kinematics did not significantly affect empirical measures of substrate displacement in either species. Because of their small body size, claw-like nails and reduced grasping capabilities, callitrichines arguably represent extant biomechanical analogs for an early stage in primate evolution. As such, greater attention should be placed on understanding asymmetrical gait dynamics for insight into hypotheses concerning early primate locomotor evolution. .


Assuntos
Marcha , Primatas , Animais , Fenômenos Biomecânicos , Equador , Locomoção , Caminhada
3.
Am J Phys Anthropol ; 170(4): 565-578, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31625141

RESUMO

OBJECTIVES: Primate diagonal sequence (DS) gaits are often argued to be an adaptation for moving and foraging in the fine-branch niche; however, existing data have come predominantly from laboratory studies that are limited in taxonomic breadth and fail to account for the structural and ecological variation of natural substrates. We test the extent to which substrate diameter and orientation influence gait sequence type and limb phase in free-ranging primates, as well as how phylogenetic relatedness might condition response patterns. MATERIALS AND METHODS: We filmed quadrupedal locomotion in 11 platyrrhine species at field sites in Ecuador and Costa Rica and measured the diameter and orientation of locomotor substrates using remote sensors. We quantified limb phase values and classified strides by gait sequence type (N = 988 strides). RESULTS: Our results show that most of the species in our sample consistently used DS gaits, regardless of substrate diameter or orientation; however, all taxa also used asymmetrical and/or lateral sequence gaits. By incorporating phylogenetic eigenvectors into our models, we found significant differences in gait sequence patterns and limb phase values among the major platyrrhine clades, suggesting that phylogeny may be a better predictor of gait than substrate diameter or orientation. DISCUSSION: Our field data generally corroborate locomotor patterns from laboratory studies but capture additional aspects of gait variability and flexibility in response to the complexity of natural environments. Overall, our results suggest that DS gaits are not exclusively tailored to narrow or oblique substrates but are used on arboreal substrates in general.


Assuntos
Meio Ambiente , Locomoção , Filogenia , Platirrinos/fisiologia , Animais , Fenômenos Biomecânicos , Costa Rica , Equador , Marcha , Platirrinos/classificação , Árvores
4.
Am J Biol Anthropol ; 184(3): e24917, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411385

RESUMO

OBJECTIVES: An accident during arboreal locomotion can lead to risky falls, but it remains unclear that the extent to which primates, as adept arborealists, change their locomotion in response to the perceived risk of moving on high supports in the tree canopy. By using more stable forms of locomotion on higher substrates, primates might avoid potentially fatal consequences. MATERIALS AND METHODS: Using high-speed cameras, we recorded the quadrupedal locomotion of four wild lemur species-Eulemur rubriventer, Eulemur rufifrons, Hapalemur aureus, and Lemur catta (N = 113 total strides). We quantified the height, diameter, and angular orientation of locomotor supports using remote sensors and tested the influence of support parameters on gait kinematics, specifically predicting that in response to increasing substrate height, lemurs would decrease speed and stride frequency, but increase stride length and the mean number of supporting limbs. RESULTS: Lemurs did not adjust stride frequency on substrates of varying height. Adjustments to speed, stride length, and the mean number of supporting limbs in response to varying height often ran counter to predictions. Only E. rubriventer decreased speed and increased the mean number of supporting limbs on higher substrates. DISCUSSION: Results suggest that quadrupedal walking is a relatively safe form of locomotion for lemurs, requiring subtle changes in gait to increase stability on higher-that is, potentially riskier-substrates. Continued investigation of the impact of height on locomotion will be important to determine how animals assess risk in their environment and how they choose to use this information to move more safely.


Assuntos
Lemur , Locomoção , Animais , Fenômenos Biomecânicos , Locomoção/fisiologia , Lemur/fisiologia , Masculino , Feminino , Marcha/fisiologia
5.
PLoS One ; 18(3): e0270941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881575

RESUMO

This study was registered with ClinicalTrials.gov (ID: NCT03715231). A total of 20 participants (37 eyes) who were 18 or older and had glaucoma or were glaucoma suspects were enrolled from the NYU Langone Eye Center and Bellevue Hospital. During their usual ophthalmology visit, they were consented for the study and underwent 360-degree goniophotography using the NIDEK Gonioscope GS-1. Afterwards, the three ophthalmologists separately examined the images obtained and determined the status of the iridocorneal angle in four quadrants using the Shaffer grading system. Physicians were masked to patient names and diagnoses. Inter-observer reproducibility was determined using Fleiss' kappa statistics. The interobserver reliability using Fleiss' statistics was shown to be significant between three glaucoma specialists with fair overall agreement (Fleiss' kappa: 0.266, p < .0001) in the interpretation of 360-degree goniophotos. Automated 360-degree goniophotography using the NIDEK Gonioscope GS-1 have quality such that they are interpreted similarly by independent expert observers. This indicates that angle investigation may be performed using this automated device and that interpretation by expert observers is likely to be similar. Images produced from automated 360-degree goniophotography using the NIDEK Gonioscope GS-1 are similarly interpreted amongst glaucoma specialists, thus supporting use of this technique to document and assess the anterior chamber angle in patients with, or suspected of, glaucoma and iridocorneal angle abnormalities.


Assuntos
Glaucoma , Hipertensão Ocular , Humanos , Reprodutibilidade dos Testes , Glaucoma/diagnóstico por imagem , Olho , Hospitais
6.
Integr Comp Biol ; 61(2): 491-505, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34022040

RESUMO

Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance. However, prior anatomical studies have found that arboreal taxa frequently have longer tails for their body size than their terrestrial counterparts, and prior laboratory studies of tail kinematics and the effects of tail reduction in focal taxa have broadly supported the hypothesis that the tail is functionally important for maintaining balance on narrow and mobile substrates. In this set of studies, we extend this work in two ways. First, we used a laboratory dataset on three-dimensional segmental kinematics and tail inertial properties in squirrel monkeys (Saimiri boliviensis) to investigate how tail angular momentum is modulated during steady-state locomotion on narrow supports. In the second study, we used a quantitative dataset on quadrupedal locomotion in wild platyrrhine monkeys to investigate how free-ranging arboreal animals adjust tail movements in response to substrate variation, focusing on kinematic measures validated in prior laboratory studies of tail mechanics (including the laboratory data presented). Our laboratory results show that S. boliviensis significantly increase average tail angular momentum magnitudes and amplitudes on narrow supports, and primarily regulate that momentum by adjusting the linear and angular velocity of the tail (rather than via changes in tail posture per se). We build on these findings in our second study by showing that wild platyrrhines responded to the precarity of narrow and mobile substrates by extending the tail and exaggerating tail displacements, providing ecological validity to the laboratory studies of tail mechanics presented here and elsewhere. In conclusion, our data support the hypothesis that the long and mobile tails of arboreal animals serve a biological role of enhancing stability when moving quadrupedally over narrow and mobile substrates. Tail angular momentum could be used to cancel out the angular momentum generated by other parts of the body during steady-state locomotion, thereby reducing whole-body angular momentum and promoting stability, and could also be used to mitigate the effects of destabilizing torques about the support should the animals encounter large, unexpected perturbations. Overall, these studies suggest that long and mobile tails should be considered among the fundamental suite of adaptations promoting safe and efficient arboreal locomotion.


Assuntos
Locomoção , Platirrinos/anatomia & histologia , Cauda , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Árvores
7.
Biol Sex Differ ; 10(1): 52, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775872

RESUMO

Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis, a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered among the most successful compounds developed for the treatment of cardiovascular disease. However, recent debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they influence but also in the expression and activity of the proteins affected and in the manner in which men and women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic potential.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Caracteres Sexuais , Animais , Homeostase , Humanos
8.
J Exp Zool A Ecol Integr Physiol ; 331(2): 103-119, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30369092

RESUMO

The grasping capabilities and gait kinematics characteristic of primates are often argued to be adaptations for safely moving on small terminal branches. The goal of this study was to identify whether Eastern gray squirrels (Sciurus carolinensis)-arboreal rodents that frequently move and forage on small branches, lack primate-like grasping and gait patterns, and arguably represent extant analogs of a stem primate ancestor-adjust gait kinematics to narrow and nonhorizontal branches. We studied locomotor kinematics of free-ranging and laboratory-housed squirrels moving over various substrates. We used high-speed video to film (a) a population of free-ranging squirrels moving on natural substrates and (b) laboratory-housed squirrels moving on horizontal poles. Substrates were coded as small, medium, or large relative to squirrel trunk diameter, and as inclined, declined, or horizontal. Free-ranging squirrels used more gallops and half-bounds on small- and medium-sized substrates, and more high-impact bounds, with reduced limb-lead durations, on declined substrates. Laboratory squirrels moved at higher speeds than free-ranging squirrels and responded to decreasing diameter by using more gallops and half-bounds, lowering speed, and-controlling for speed-increasing mean duty factor, mean number of supporting limbs, and relative forelimb lead duration. Our inability to detect substantial diameter or orientation-related gait adjustments in the wild may be due to a limited accounting of confounding influences (e.g., substrate compliance). Ultimately, studies assessing stability measures (e.g., center of mass fluctuations and peak vertical force) are required to assess whether primates' enhanced grasping and gait patterns engender performance advantages on narrow or oblique substrates.


Assuntos
Evolução Biológica , Atividade Motora/fisiologia , Primatas , Sciuridae/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Locomoção/fisiologia , Primatas/genética , Primatas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA