Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179383

RESUMO

Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focussed primarily on the drug physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs and lipid-conjugated materials that 'hitchhike' on lymphatic transport pathways. With the increasing development of novel biological therapeutics there has been interest in whether these novel therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarise the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies into the future. Significance Statement This comprehensive review details understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.

2.
J Tissue Viability ; 30(3): 352-362, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33875344

RESUMO

Pairs of magnets were applied to the loose skin on the backs of mice in order to cause ischemia for periods of 1.5, 2, 2.5 and 3 h followed by reperfusion. We found 1.5 h of ischemia resulted in the most reliable outcome of blanched skin but no redness or skin breakdown. Histological analysis at 4 h of reperfusion showed, in the centre of the insult, condensed nuclei in the epidermis and sebaceous glands with a build up of neutrophils in the blood vessels, and a reduction in the number of fibroblasts. At 24 h, spongiosis was seen in the epidermis and pockets of neutrophils began to accumulate under it, as well as being scatted through the dermis. In the centre of the insult there was a loss of sebaceous gland nuclei and fibroblasts. Four days after the insult, spongiosis was reduced in the epidermis at the edge of the insult but enhanced in the centre and in hair follicles. Leukocytes were seen throughout the central dermis. At 8 days, spongiosis and epidermal thickness had reduced and fibroblasts were reappearing. However, blood vessels still had leukocytes lining the lumen. The gap junction protein connexin 43 was significantly elevated in the epidermis at 4 h and 24 h reperfusion. Ischemia of 1.5 h generates a sterile inflammatory reaction causing the loss of some cell types but leaving the epidermis intact reminiscent of a stage I pressure ulcer.


Assuntos
Isquemia/complicações , Úlcera por Pressão/etiologia , Reperfusão/métodos , Pele/fisiopatologia , Animais , Modelos Animais de Doenças , Isquemia/fisiopatologia , Camundongos , Pressão/efeitos adversos , Úlcera por Pressão/fisiopatologia , Reperfusão/normas , Reperfusão/estatística & dados numéricos , Pele/patologia
3.
J Gastroenterol Hepatol ; 32(11): 1796-1803, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28294403

RESUMO

Acute pancreatitis (AP) is a common disease for which a specific treatment remains elusive. The key determinants of the outcome from AP are persistent organ failure and infected pancreatic necrosis. The prevention and treatment of these determinants provides a framework for the development of specific treatment strategies. The gut-lymph concept provides a common mechanism for systemic inflammation and organ dysfunction. Acute and critical illness, including AP, is associated with intestinal ischemia and drastic changes in the composition of gut lymph, which bypasses the liver to drain into the systemic circulation immediately proximal to the major organ systems which fail. The external diversion of gut lymph and the targeting of treatments to counter the toxic elements in gut lymph offers novel approaches to the prevention and treatment of persistent organ failure. Infected pancreatic necrosis is increasingly treated with less invasive techniques, the mainstay of which is drainage, both endoscopic and percutaneous. Further improvements will occur with the strategies to accelerate liquefaction and through a fundamental re-design of drains, both of which will increase drainage efficacy. The determinants of severity and outcome in patients admitted with AP provide the basis for innovative treatment strategies. The priorities are to translate the gut-lymph concept to clinical practice and to improve the design and active use of drains for infected complications of AP.


Assuntos
Pancreatite/terapia , Doença Aguda , Animais , Drenagem/métodos , Humanos , Linfa , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Pancreatite/complicações , Índice de Gravidade de Doença , Resultado do Tratamento
4.
Sci Adv ; 10(34): eadp2254, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178255

RESUMO

Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.


Assuntos
Ceramidas , Quilomícrons , Dieta Hiperlipídica , Mucosa Intestinal , Animais , Ceramidas/metabolismo , Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ratos , Mucosa Intestinal/metabolismo , Humanos , Masculino , Lipidômica , Intestinos/metabolismo
5.
World J Gastroenterol ; 22(19): 4673-84, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27217699

RESUMO

AIM: To assess the effects of ischemic preconditioning (IPC, 10-min ischemia/10-min reperfusion) on steatotic liver mitochondrial function after normothermic ischemia-reperfusion injury (IRI). METHODS: Sixty male Sprague-Dawley rats were fed 8-wk with either control chow or high-fat/high-sucrose diet inducing > 60% mixed steatosis. Three groups (n = 10/group) for each dietary state were tested: (1) the IRI group underwent 60 min partial hepatic ischemia and 4 h reperfusion; (2) the IPC group underwent IPC prior to same standard IRI; and (3) sham underwent the same surgery without IRI or IPC. Hepatic mitochondrial function was analyzed by oxygraphs. Mitochondrial Complex-I, Complex-II enzyme activity, serum alanine aminotransferase (ALT), and histological injury were measured. RESULTS: Steatotic-IRI livers had a greater increase in ALT (2476 ± 166 vs 1457 ± 103 IU/L, P < 0.01) and histological injury following IRI compared to the lean liver group. Steatotic-IRI demonstrated lower Complex-I activity at baseline [78.4 ± 2.5 vs 116.4 ± 6.0 nmol/(min.mg protein), P < 0.001] and following IRI [28.0 ± 6.2 vs 104.3 ± 12.6 nmol/(min.mg protein), P < 0.001]. Steatotic-IRI also demonstrated impaired Complex-I function post-IRI compared to the lean liver IRI group. Complex-II activity was unaffected by hepatic steatosis or IRI. Lean liver mitochondrial function was unchanged following IRI. IPC normalized ALT and histological injury in steatotic livers but had no effect on overall steatotic liver mitochondrial function or individual mitochondrial complex enzyme activities. CONCLUSION: Warm IRI impairs steatotic liver Complex-I activity and function. The protective effects of IPC in steatotic livers may not be mediated through mitochondria.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Precondicionamento Isquêmico/métodos , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/terapia , Traumatismo por Reperfusão/prevenção & controle , Alanina Transaminase/sangue , Animais , Dieta Hiperlipídica , Sacarose Alimentar , Modelos Animais de Doenças , Regulação para Baixo , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/enzimologia , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA