Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 71(12): 3390-3404, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32152629

RESUMO

Throughout the evolution of the angiosperm flower, developmental innovations have enabled the modification or elaboration of novel floral organs enabling subsequent diversification and expansion into new niches, for example the formation of novel pollinator relationships. One such developmental innovation is the fusion of various floral organs to form complex structures. Multiple types of floral fusion exist; each type may be the result of different developmental processes and is likely to have evolved multiple times independently across the angiosperm tree of life. The development of fused organs is thought to be mediated by the NAM/CUC3 subfamily of NAC transcription factors, which mediate boundary formation during meristematic development. The goal of this review is to (i) introduce the development of fused floral organs as a key 'developmental innovation', facilitated by a change in the expression of NAM/CUC3 transcription factors; (ii) provide a comprehensive overview of floral fusion phenotypes amongst the angiosperms, defining well-known fusion phenotypes and applying them to a systematic context; and (iii) summarize the current molecular knowledge of this phenomenon, highlighting the evolution of the NAM/CUC3 subfamily of transcription factors implicated in the development of fused organs. The need for a network-based analysis of fusion is discussed, and a gene regulatory network responsible for directing fusion is proposed to guide future research in this area.


Assuntos
Evolução Biológica , Magnoliopsida , Evolução Molecular , Flores/genética , Magnoliopsida/genética , Fenótipo , Filogenia , Fatores de Transcrição/genética
2.
Front Plant Sci ; 13: 874322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161003

RESUMO

Selection together with variation in floral traits can act to mold floral form, often driven by a plant's predominant or most effective pollinators. To investigate the evolution of traits associated with pollination, we developed a phylogenetic framework for evaluating tempo and mode of pollination shifts across the genus Costus L., known for its evolutionary toggle between traits related to bee and bird pollination. Using a target enrichment approach, we obtained 957 loci for 171 accessions to expand the phylogenetic sampling of Neotropical Costus. In addition, we performed whole genome resequencing for a subset of 20 closely related species with contrasting pollination syndromes. For each of these 20 genomes, a high-quality assembled transcriptome was used as reference for consensus calling of candidate loci hypothesized to be associated with pollination-related traits of interest. To test for the role these candidate genes may play in evolutionary shifts in pollinators, signatures of selection were estimated as dN/dS across the identified candidate loci. We obtained a well-resolved phylogeny for Neotropical Costus despite conflict among gene trees that provide evidence of incomplete lineage sorting and/or reticulation. The overall topology and the network of genome-wide single nucleotide polymorphisms (SNPs) indicate that multiple shifts in pollination strategy have occurred across Costus, while also suggesting the presence of previously undetected signatures of hybridization between distantly related taxa. Traits related to pollination syndromes are strongly correlated and have been gained and lost in concert several times throughout the evolution of the genus. The presence of bract appendages is correlated with two traits associated with defenses against herbivory. Although labellum shape is strongly correlated with overall pollination syndrome, we found no significant impact of labellum shape on diversification rates. Evidence suggests an interplay of pollination success with other selective pressures shaping the evolution of the Costus inflorescence. Although most of the loci used for phylogenetic inference appear to be under purifying selection, many candidate genes associated with functional traits show evidence of being under positive selection. Together these results indicate an interplay of phylogenetic history with adaptive evolution leading to the diversification of pollination-associated traits in Neotropical Costus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA