Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 558(7711): 595-599, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925949

RESUMO

Many organisms capture or sense sunlight using rhodopsin pigments1,2, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families 1 , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix2,3. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures 1 . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.


Assuntos
Metagenômica , Rodopsina/análise , Rodopsina/classificação , Sequência de Aminoácidos , Eucariotos/química , Evolução Molecular , Rodopsina/química , Rodopsina/efeitos da radiação , Rodopsinas Microbianas/análise , Rodopsinas Microbianas/química , Rodopsinas Microbianas/classificação , Rodopsinas Microbianas/efeitos da radiação
2.
Proc Natl Acad Sci U S A ; 117(47): 29738-29747, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33172994

RESUMO

Virus-microbe interactions have been studied in great molecular details for many years in cultured model systems, yielding a plethora of knowledge on how viruses use and manipulate host machinery. Since the advent of molecular techniques and high-throughput sequencing, methods such as cooccurrence, nucleotide composition, and other statistical frameworks have been widely used to infer virus-microbe interactions, overcoming the limitations of culturing methods. However, their accuracy and relevance is still debatable as cooccurrence does not necessarily mean interaction. Here we introduce an ecological perspective of marine viral communities and potential interaction with their hosts, using analyses that make no prior assumptions on specific virus-host pairs. By size fractionating water samples into free viruses and microbes (i.e., also viruses inside or attached to their hosts) and looking at how viral group abundance changes over time along both fractions, we show that the viral community is undergoing a change in rank abundance across seasons, suggesting a seasonal succession of viruses in the Red Sea. We use abundance patterns in the different size fractions to classify viral clusters, indicating potential diverse interactions with their hosts and potential differences in life history traits between major viral groups. Finally, we show hourly resolved variations of intracellular abundance of similar viral groups, which might indicate differences in their infection cycles or metabolic capacities.


Assuntos
Organismos Aquáticos/virologia , Estações do Ano , Água do Mar/microbiologia , Viroma/genética , Vírus/genética , Organismos Aquáticos/genética , DNA Viral/isolamento & purificação , Oceano Índico , Metagenoma , Interações Microbianas/genética , Vírus/classificação , Vírus/isolamento & purificação
3.
Environ Microbiol ; 17(12): 5100-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26310718

RESUMO

Marine photosynthesis is largely driven by cyanobacteria, namely Synechococcus and Prochlorococcus. Genes encoding for photosystem (PS) I and II reaction centre proteins are found in cyanophages and are believed to increase their fitness. Two viral PSI gene arrangements are known, psaJF→C→A→B→K→E→D and psaD→C→A→B. The shared genes between these gene cassettes and their encoded proteins are distinguished by %G + C and protein sequence respectively. The data on the psaD→C→A→B gene organization were reported from only two partial gene cassettes coming from Global Ocean Sampling stations in the Pacific and Indian oceans. Now we have extended our search to 370 marine stations from six metagenomic projects. Genes corresponding to both PSI gene arrangements were detected in the Pacific, Indian and Atlantic oceans, confined to a strip along the equator (30°N and 30°S). In addition, we found that the predicted structure of the viral PsaA protein from the psaD→C→A→B organization contains a lumenal loop conserved in PsaA proteins from Synechococcus, but is completely absent in viral PsaA proteins from the psaJF→C→A→B→K→E→D gene organization and most Prochlorococcus strains. This may indicate a co-evolutionary scenario where cyanophages containing either of these gene organizations infect cyanobacterial ecotypes biogeographically restricted to the 30°N and 30°S equatorial strip.


Assuntos
Bacteriófagos/genética , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Prochlorococcus/genética , Synechococcus/genética , Sequência de Aminoácidos , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Oceano Atlântico , Evolução Biológica , Ordem dos Genes , Genes Virais/genética , Oceano Índico , Metagenômica , Oceano Pacífico , Complexo de Proteína do Fotossistema II/genética , Prochlorococcus/metabolismo , Prochlorococcus/virologia , Synechococcus/metabolismo , Synechococcus/virologia
4.
Nat Microbiol ; 7(2): 200-212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027677

RESUMO

Eukaryotic genomes are known to have garnered innovations from both archaeal and bacterial domains but the sequence of events that led to the complex gene repertoire of eukaryotes is largely unresolved. Here, through the enrichment of hydrothermal vent microorganisms, we recovered two circularized genomes of Heimdallarchaeum species that belong to an Asgard archaea clade phylogenetically closest to eukaryotes. These genomes reveal diverse mobile elements, including an integrative viral genome that bidirectionally replicates in a circular form and aloposons, transposons that encode the 5,000 amino acid-sized proteins Otus and Ephialtes. Heimdallaechaeal mobile elements have garnered various genes from bacteria and bacteriophages, likely playing a role in shuffling functions across domains. The number of archaea- and bacteria-related genes follow strikingly different scaling laws in Asgard archaea, exhibiting a genome size-dependent ratio and a functional division resembling the bacteria- and archaea-derived gene repertoire across eukaryotes. Bacterial gene import has thus likely been a continuous process unaltered by eukaryogenesis and scaled up through genome expansion. Our data further highlight the importance of viewing eukaryogenesis in a pan-Asgard context, which led to the proposal of a conceptual framework, that is, the Heimdall nucleation-decentralized innovation-hierarchical import model that accounts for the emergence of eukaryotic complexity.


Assuntos
Archaea/genética , Eucariotos/genética , Evolução Molecular , Fluxo Gênico , Genoma Arqueal , Células Procarióticas/metabolismo , Proteínas Arqueais/genética , Bactérias/genética , Metagenômica , Filogenia
5.
Environ Microbiol ; 11(12): 3189-200, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19678830

RESUMO

The high genomic G+C group of Actinobacteria possesses a variety of physiological and metabolic properties, and exhibits diverse lifestyles and ecological distribution. In recent years, Actinobacteria have been found to frequently dominate samples obtained from freshwater samples. Furthermore, phylogenetic analyses have shown that 16S rRNA genes from uncultured actinobacterial freshwater samples cluster in four distinct lineages. While these lineages are abundant, little is known about them and currently no pure-culture representatives or genomic fragments of them are available. In a screen of a genomic library from the moderately eutrophic freshwater Lake Kinneret, five fosmid clones containing actinobacterial genomic fragments were found. Three approximately 40 kb genomic fragments were chosen for sequencing. Fosmids K003 and K005 showed high similarity and were affiliated with the acIV actinobacterial freshwater lineage. Fosmid K004 was affiliated with the highly abundant acI lineage. A comparative genomic analysis revealed high synteny between the two freshwater clones K003 and K005 but a lower synteny between these two and the K004 fosmid. Fosmids K003 and K005 share an identical arrangement of arginine biosynthesis gene while K004 showed a slightly different arrangement by lacking the argF gene. Fosmid Ant4E12, an Antarctic actinobacterial clone, showed a higher synteny with K003/5 than K004 and a similar arginine operon, but in a different genomic context. The Clusters of Orthologous Groups categories assignment of the three fosmids yielded genes that were mostly involved in amino acid and nucleotide metabolism, as well as transport and ribosomal RNA translation, structure and biogenesis. These genomic fragments represent the first sequences to be published from these lineages, providing a cornerstone for future work on this environmentally dominant group.


Assuntos
Actinobacteria/genética , Água Doce/microbiologia , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Monitoramento Ambiental , Genoma Bacteriano , Israel , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Environ Microbiol Rep ; 11(4): 598-604, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125500

RESUMO

Marine cyanobacteria are important contributors to primary production in the ocean and their viruses (cyanophages) affect the ocean microbial communities. Despite reports of lysogeny in marine cyanobacteria, a genome sequence of such temperate cyanophages remains unknown although genomic analysis indicate potential for lysogeny in certain marine cyanophages. Using assemblies from Red Sea and Tara Oceans metagenomes, we recovered genomes of a novel uncultured marine cyanophage lineage, which contain, in addition to common cyanophage genes, a phycobilisome degradation protein NblA, an integrase and a split DNA polymerase. The DNA polymerase forms a monophyletic clade with a DNA polymerase from a genomic island in Synechococcus WH8016. The island contains a relic prophage that does not resemble any previously reported cyanophage but shares several genes with the newly identified cyanophages reported here. Metagenomic recruitment indicates that the novel cyanophages are widespread, albeit at low abundance. Here, we describe a novel potentially lysogenic cyanophage family, their abundance and distribution in the marine environment.


Assuntos
Bacteriófagos/genética , Lisogenia/genética , Prófagos/genética , Água do Mar/virologia , Synechococcus/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Sequência de Bases , Genoma Viral , Ilhas Genômicas/genética , Metagenoma , Oceanos e Mares , Filogenia , Prófagos/classificação , Prófagos/isolamento & purificação , Synechococcus/genética , Proteínas Virais/genética
7.
Curr Biol ; 27(9): 1362-1368, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457865

RESUMO

Marine group II Euryarchaeota (MG-II) are among the most abundant microbes in oceanic surface waters [1-4]. So far, however, representatives of MG-II have not been cultivated, and no viruses infecting these organisms have been described. Here, we present complete genomes for three distinct groups of viruses assembled from metagenomic sequence datasets highly enriched for MG-II. These novel viruses, which we denote magroviruses, possess double-stranded DNA genomes of 65 to 100 kilobases in size that encode a structural module characteristic of head-tailed viruses and, unusually for archaeal and bacterial viruses, a nearly complete replication apparatus of apparent archaeal origin. The newly identified magroviruses are widespread and abundant and therefore are likely to be major ecological agents.


Assuntos
Vírus de Archaea/classificação , Vírus de Archaea/fisiologia , Euryarchaeota/virologia , Metagenômica , Vírus de Archaea/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Genoma Viral , Oceanos e Mares , Filogenia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Integração Viral , Replicação Viral
8.
Nat Microbiol ; 2(10): 1350-1357, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28785078

RESUMO

Cyanobacteria are important contributors to primary production in the open oceans. Over the past decade, various photosynthesis-related genes have been found in viruses that infect cyanobacteria (cyanophages). Although photosystem II (PSII) genes are common in both cultured cyanophages and environmental samples 1-4 , viral photosystem I (vPSI) genes have so far only been detected in environmental samples 5,6 . Here, we have used a targeted strategy to isolate a cyanophage from the tropical Pacific Ocean that carries a PSI gene cassette with seven distinct PSI genes (psaJF, C, A, B, K, E, D) as well as two PSII genes (psbA, D). This cyanophage, P-TIM68, belongs to the T4-like myoviruses, has a prolate capsid, a long contractile tail and infects Prochlorococcus sp. strain MIT9515. Phage photosynthesis genes from both photosystems are expressed during infection, and the resultant proteins are incorporated into membranes of the infected host. Moreover, photosynthetic capacity in the cell is maintained throughout the infection cycle with enhancement of cyclic electron flow around PSI. Analysis of metagenomic data from the Tara Oceans expedition 7 shows that phages carrying PSI gene cassettes are abundant in the tropical Pacific Ocean, composing up to 28% of T4-like cyanomyophages. They are also present in the tropical Indian and Atlantic Oceans. P-TIM68 populations, specifically, compose on average 22% of the PSI-gene-cassette carrying phages. Our results suggest that cyanophages carrying PSI and PSII genes are likely to maintain and even manipulate photosynthesis during infection of their Prochlorococcus hosts in the tropical oceans.


Assuntos
Transporte de Elétrons/genética , Myoviridae/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Prochlorococcus/genética , Prochlorococcus/virologia , Oceano Atlântico , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genes Virais/genética , Genoma Viral/genética , Myoviridae/classificação , Myoviridae/patogenicidade , Myoviridae/ultraestrutura , Oceano Pacífico , Fotossíntese/genética , Filogenia , Proteínas Virais/genética
9.
Environ Microbiol Rep ; 5(3): 475-82, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754728

RESUMO

The Gulf of Aqaba, extending north to the Red Sea, is an oligotrophic basin with typical open ocean gyre characteristics. Here we report on the existence of diverse microbial rhodopsins in the Gulf of Aqaba, based on 454-pyrosequencing-generated metagenome and metatranscriptome data sets, obtained from the microbial fraction smaller than 1.6 µm. Bacterial SAR11, SAR86 and archaeal proteorhodopsins as well as viral-like rhodopsins were detected on the DNA level. On the RNA level, only SAR11 and SAR86 proteorhodopsin transcripts were detected. Our results add to the growing evidence that microbial rhodopsins are a diverse, abundant and widespread protein family.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Phycodnaviridae/genética , Rodopsina/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Archaea/metabolismo , Proteínas Arqueais/classificação , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Oceano Índico , Metagenoma , Consórcios Microbianos , Dados de Sequência Molecular , Phycodnaviridae/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rodopsina/classificação , Rodopsina/metabolismo , Alinhamento de Sequência , Proteínas Virais/classificação , Proteínas Virais/metabolismo
10.
ISME J ; 6(4): 827-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22011717

RESUMO

Phosphonates (Pn) are diverse organic phosphorus (P) compounds containing C-P bonds and comprise up to 25% of the high-molecular weight dissolved organic P pool in the open ocean. Pn bioavailability was suggested to influence markedly bacterial primary production in low-P areas. Using metagenomic data from the Global Ocean Sampling expedition, we show that the main potential microbial contributor in Pn utilization in oceanic surface water is the globally important marine primary producer Prochlorococcus. Moreover, a number of Prochlorococcus strains contain two distinct putative Pn uptake operons coding for ABC-type Pn transporters. On the basis of microcalorimetric measurements, we find that each of the two different putative Pn-binding protein (PhnD) homologs transcribed from these operons possesses different Pn- as well as inorganic phosphite-binding specificities. Our results suggest that Prochlorococcus adapt to low-P environments by increasing the number of Pn transporters with different specificities towards phosphite and different Pns.


Assuntos
Organofosfonatos/metabolismo , Fosfitos/metabolismo , Prochlorococcus/metabolismo , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metagenômica , Oceanos e Mares , Óperon , Filogenia , Prochlorococcus/genética , Água do Mar/química
11.
ISME J ; 4(8): 1044-52, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20237514

RESUMO

In vast areas of the oceans, most of the primary production is performed by cells smaller than 2-3 mum in diameter (picophytoplankton). In recent years, several in situ molecular studies showed a broad genetic diversity of small eukaryotes by sequencing 18S rRNA genes. Compared with photosynthetic cyanobacteria that are dominated by two genera, Prochlorococcus and Synechococcus, marine photosynthetic picoeukaryotes (PPEs) are much more diverse, with virtually every algal class being represented. However, the genetic diversity and ecology of PPEs are still poorly described. Here, we show using in situ molecular analyses of psbA transcripts that PPEs in the Eastern Mediterranean Sea are highly diverse, probably very active, and dominated by groups belonging to the red algal lineages, Haptophyta, Heterokontophyta (also called Stramenopiles), and Cryptophyta.


Assuntos
Proteínas de Algas/genética , Eucariotos/genética , Variação Genética , Complexo de Proteína do Fotossistema II/genética , Fitoplâncton/genética , Água do Mar/análise , Proteínas de Algas/metabolismo , Eucariotos/classificação , Eucariotos/isolamento & purificação , Eucariotos/metabolismo , Mar Mediterrâneo , Dados de Sequência Molecular , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Fitoplâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA