Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
PLoS Genet ; 20(1): e1011146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295128

RESUMO

tRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S. pombe mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels. Prior work showed that S. pombe trm8Δ mutants, lacking 7-methylguanosine, were temperature sensitive due to RTD, and that one class of suppressors had mutations in the general amino acid control (GAAC) pathway, which was activated concomitant with RTD, resulting in further tRNA loss. We now find that another class of S. pombe trm8Δ suppressors have mutations in rpl genes, encoding 60S subunit proteins, and that suppression occurs with minimal restoration of tRNA levels and reduced GAAC activation. Furthermore, trm8Δ suppression extends to other mutations in the large or small ribosomal subunit. We also find that S. pombe tan1Δ mutants, lacking 4-acetylcytidine, are temperature sensitive due to RTD, that one class of suppressors have rpl mutations, associated with minimal restoration of tRNA levels, and that suppression extends to other rpl and rps mutations. However, although S. pombe tan1Δ temperature sensitivity is associated with some GAAC activation, suppression by an rpl mutation only modestly inhibits GAAC activation. We propose a model in which ribosomal protein mutations result in reduced ribosome concentrations, leading to both reduced ribosome collisions and a reduced requirement for tRNA, with these effects having different relative importance in trm8Δ and tan1Δ mutants. This model is consistent with our results in S. cerevisiae trm8Δ trm4Δ mutants, known to undergo RTD, fueling speculation that this model applies across eukaryotes.


Assuntos
Saccharomyces cerevisiae , Schizosaccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Processamento Pós-Transcricional do RNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Ribossômicas/genética , Mutação
2.
RNA ; 29(7): 898-957, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055150

RESUMO

The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon/metabolismo , Splicing de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
PLoS Genet ; 18(7): e1010215, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35901126

RESUMO

All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5'-3' exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3'-5' exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Adenosina/análogos & derivados , Exonucleases/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Filogenia , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
4.
PLoS Genet ; 16(8): e1008893, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841241

RESUMO

All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.


Assuntos
Exorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA de Transferência/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , tRNA Metiltransferases/metabolismo , Aminoácidos/metabolismo , Evolução Molecular , Exorribonucleases/genética , RNA de Transferência/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , tRNA Metiltransferases/genética
5.
RNA ; 26(1): 29-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619505

RESUMO

During tRNA maturation in yeast, aberrant pre-tRNAs are targeted for 3'-5' degradation by the nuclear surveillance pathway, and aberrant mature tRNAs are targeted for 5'-3' degradation by the rapid tRNA decay (RTD) pathway. RTD is catalyzed by the 5'-3' exonucleases Xrn1 and Rat1, which act on tRNAs with an exposed 5' end due to the lack of certain body modifications or the presence of destabilizing mutations in the acceptor stem, T-stem, or tRNA fold. RTD is inhibited by mutation of MET22, likely due to accumulation of the Met22 substrate adenosine 3',5' bis-phosphate, which inhibits 5'-3' exonucleases. Here we provide evidence for a new tRNA quality control pathway in which intron-containing pre-tRNAs with destabilizing mutations in the anticodon stem are targeted for Met22-dependent pre-tRNA decay (MPD). Multiple SUP4οc anticodon stem variants that are subject to MPD each perturb the bulge-helix-bulge structure formed by the anticodon stem-loop and intron, which is important for splicing, resulting in substantial accumulation of end-matured unspliced pre-tRNA as well as pre-tRNA decay. Mutations that restore exon-intron structure commensurately reduce pre-tRNA accumulation and MPD. The MPD pathway can contribute substantially to decay of anticodon stem variants, since pre-tRNA decay is largely suppressed by removal of the intron or by restoration of exon-intron structure, each also resulting in increased tRNA levels. The MPD pathway is general as it extends to variants of tRNATyr(GUA) and tRNASer(CGA) These results demonstrate that the integrity of the anticodon stem-loop and the efficiency of tRNA splicing are monitored by a quality control pathway.


Assuntos
Anticódon/genética , Nucleotidases/metabolismo , Precursores de RNA/genética , Estabilidade de RNA , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Éxons/genética , Íntrons/genética , Mutação , Conformação de Ácido Nucleico , Nucleotidases/genética , Splicing de RNA
6.
Genes Dev ; 28(15): 1721-32, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085423

RESUMO

Sequence variation in tRNA genes influences the structure, modification, and stability of tRNA; affects translation fidelity; impacts the activity of numerous isodecoders in metazoans; and leads to human diseases. To comprehensively define the effects of sequence variation on tRNA function, we developed a high-throughput in vivo screen to quantify the activity of a model tRNA, the nonsense suppressor SUP4oc of Saccharomyces cerevisiae. Using a highly sensitive fluorescent reporter gene with an ochre mutation, fluorescence-activated cell sorting of a library of SUP4oc mutant yeast strains, and deep sequencing, we scored 25,491 variants. Unexpectedly, SUP4oc tolerates numerous sequence variations, accommodates slippage in tertiary and secondary interactions, and exhibits genetic interactions that suggest an alternative functional tRNA conformation. Furthermore, we used this methodology to define tRNA variants subject to rapid tRNA decay (RTD). Even though RTD normally degrades tRNAs with exposed 5' ends, mutations that sensitize SUP4oc to RTD were found to be located throughout the sequence, including the anti-codon stem. Thus, the integrity of the entire tRNA molecule is under surveillance by cellular quality control machinery. This approach to assess activity at high throughput is widely applicable to many problems in tRNA biology.


Assuntos
Estabilidade de RNA/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citometria de Fluxo , Variação Genética , Ensaios de Triagem em Larga Escala , Mutação/genética , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
PLoS Genet ; 14(3): e1007288, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29596413

RESUMO

Modification defects in the tRNA anticodon loop often impair yeast growth and cause human disease. In the budding yeast Saccharomyces cerevisiae and the phylogenetically distant fission yeast Schizosaccharomyces pombe, trm7Δ mutants grow poorly due to lack of 2'-O-methylation of C32 and G34 in the tRNAPhe anticodon loop, and lesions in the human TRM7 homolog FTSJ1 cause non-syndromic X-linked intellectual disability (NSXLID). However, it is unclear why trm7Δ mutants grow poorly. We show here that despite the fact that S. cerevisiae trm7Δ mutants had no detectable tRNAPhe charging defect in rich media, the cells constitutively activated a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. Consistent with reduced available charged tRNAPhe, the trm7Δ growth defect was suppressed by spontaneous mutations in phenylalanyl-tRNA synthetase (PheRS) or in the pol III negative regulator MAF1, and by overexpression of tRNAPhe, PheRS, or EF-1A; all of these also reduced GAAC activation. Genetic analysis also demonstrated that the trm7Δ growth defect was due to the constitutive robust GAAC activation as well as to the reduced available charged tRNAPhe. Robust GAAC activation was not observed with several other anticodon loop modification mutants. Analysis of S. pombe trm7 mutants led to similar observations. S. pombe Trm7 depletion also resulted in no observable tRNAPhe charging defect and a robust GAAC response, and suppressors mapped to PheRS and reduced GAAC activation. We speculate that GAAC activation is widely conserved in trm7 mutants in eukaryotes, including metazoans, and might play a role in FTSJ1-mediated NSXLID.


Assuntos
Aminoácidos/metabolismo , Anticódon , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Schizosaccharomyces/classificação , Schizosaccharomyces/genética , Genes Fúngicos , Metilação , Mutação , Filogenia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Schizosaccharomyces/crescimento & desenvolvimento
8.
RNA ; 24(10): 1277-1284, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30026310

RESUMO

The numerous post-transcriptional modifications of tRNA play a crucial role in tRNA function. While most modifications are introduced to tRNA independently, several sets of modifications are found to be interconnected such that the presence of one set of modifications drives the formation of another modification. The vast majority of these modification circuits are found in the anticodon loop (ACL) region where the largest variety and highest density of modifications occur compared to the other parts of the tRNA and where there is relatively limited sequence and structural information. We speculate here that the modification circuits in the ACL region arise to enhance enzyme modification specificity by direct or indirect use of the first modification in the circuit as an additional recognition element for the second modification. We also describe the five well-studied modification circuits in the ACL, and outline possible mechanisms by which they may act. The prevalence of these modification circuits in the ACL and the phylogenetic conservation of some of them suggest that a number of other modification circuits will be found in this region in different organisms.


Assuntos
Anticódon , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Metilação , Modelos Biológicos , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/metabolismo
9.
RNA ; 24(3): 410-422, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29259051

RESUMO

Microorganisms have universally adapted their RNAs and proteins to survive at a broad range of temperatures and growth conditions. However, for RNAs, there is little quantitative understanding of the effects of mutations on function at high temperatures. To understand how variant tRNA function is affected by temperature change, we used the tRNA nonsense suppressor SUP4oc of the yeast Saccharomyces cerevisiae to perform a high-throughput quantitative screen of tRNA function at two different growth temperatures. This screen yielded comparative values for 9243 single and double variants. Surprisingly, despite the ability of S. cerevisiae to grow at temperatures as low as 15°C and as high as 39°C, the vast majority of variants that could be scored lost half or more of their function when evaluated at 37°C relative to 28°C. Moreover, temperature sensitivity of a tRNA variant was highly associated with its susceptibility to the rapid tRNA decay (RTD) pathway, implying that RTD is responsible for most of the loss of function of variants at higher temperature. Furthermore, RTD may also operate in a met22Δ strain, which was previously thought to fully inhibit RTD. Consistent with RTD acting to degrade destabilized tRNAs, the stability of a tRNA molecule can be used to predict temperature sensitivity with high confidence. These findings offer a new perspective on the stability of tRNA molecules and their quality control at high temperature.


Assuntos
Fatores de Terminação de Peptídeos/genética , Estabilidade de RNA/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biblioteca Gênica , Genes Reporter , Mutação , RNA de Transferência/química , Saccharomyces cerevisiae/fisiologia , Análise de Sequência de DNA , Temperatura
10.
Nucleic Acids Res ; 46(15): 7831-7843, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30007351

RESUMO

To develop a system for conditional amino acid misincorporation, we engineered tRNAs in the yeast Saccharomyces cerevisiae to be substrates of the rapid tRNA decay (RTD) pathway, such that they accumulate when RTD is turned off. We used this system to test the effects on growth of a library of tRNASer variants with all possible anticodons, and show that many are lethal when RTD is inhibited and the tRNA accumulates. Using mass spectrometry, we measured serine misincorporation in yeast containing each of six tRNA variants, and for five of them identified hundreds of peptides with serine substitutions at the targeted amino acid sites. Unexpectedly, we found that there is not a simple correlation between toxicity and the level of serine misincorporation; in particular, high levels of serine misincorporation can occur at cysteine residues without obvious growth defects. We also showed that toxic tRNAs can be used as a tool to identify sequence variants that reduce tRNA function. Finally, we generalized this method to another tRNA species, and generated conditionally toxic tRNATyr variants in a similar manner. This method should facilitate the study of tRNA biology and provide a tool to probe the effects of amino acid misincorporation on cellular physiology.


Assuntos
Substituição de Aminoácidos/genética , Biossíntese de Proteínas/genética , RNA de Transferência de Serina/genética , RNA de Transferência de Tirosina/genética , Saccharomyces cerevisiae/metabolismo , Anticódon/genética , Estabilidade de RNA/genética , Saccharomyces cerevisiae/genética , Serina/metabolismo , Tirosina/metabolismo
11.
Hum Genet ; 138(3): 231-239, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30778726

RESUMO

Pseudouridylation is the most common post-transcriptional modification, wherein uridine is isomerized into 5-ribosyluracil (pseudouridine, Ψ). The resulting increase in base stacking and creation of additional hydrogen bonds are thought to enhance RNA stability. Pseudouridine synthases are encoded in humans by 13 genes, two of which are linked to Mendelian diseases: PUS1 and PUS3. Very recently, PUS7 mutations were reported to cause intellectual disability with growth retardation. We describe two families in which two different homozygous PUS7 mutations (missense and frameshift deletion) segregate with a phenotype comprising intellectual disability and progressive microcephaly. Short stature and hearing loss were variable in these patients. Functional characterization of the two mutations confirmed that both result in decreased levels of Ψ13 in tRNAs. Furthermore, the missense variant of the S. cerevisiae ortholog failed to complement the growth defect of S. cerevisiae pus7Δ trm8Δ mutants. Our results confirm that PUS7 is a bona fide Mendelian disease gene and expand the list of human diseases caused by impaired pseudouridylation.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Microcefalia/genética , Mutação , Pseudouridina/genética , Adolescente , Sequência de Aminoácidos , Criança , Mapeamento Cromossômico , Consanguinidade , Feminino , Genes Recessivos , Humanos , Masculino , Microcefalia/diagnóstico , Linhagem , Fenótipo , RNA de Transferência/genética , Sequenciamento do Exoma
12.
RNA ; 23(3): 406-419, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28003514

RESUMO

The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.


Assuntos
Anticódon/química , Citidina/análogos & derivados , Proteínas dos Microfilamentos/metabolismo , RNA de Transferência de Serina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/metabolismo , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Citidina/genética , Citidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas dos Microfilamentos/genética , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , tRNA Metiltransferases/genética
13.
Nucleic Acids Res ; 45(1): 255-270, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899637

RESUMO

Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Divisão Celular , Biologia Computacional , Dosagem de Genes , Perfilação da Expressão Gênica , Genes Letais , Aptidão Genética , Mutação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Genes Dev ; 25(11): 1173-84, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632824

RESUMO

tRNAs, like other RNAs, are subject to quality control steps during and after biosynthesis. We previously described a rapid tRNA degradation (RTD) pathway in which the 5'-3' exonucleases Rat1 and Xrn1 degrade mature tRNA(Val(AAC)) in yeast mutants lacking m(7)G and m(5)C, and mature tRNA(Ser(CGA)) in mutants lacking Um and ac(4)C. To understand how the RTD pathway selects substrate tRNAs among different tRNAs lacking the same modifications, we used a genetic screen to examine tRNA(Ser(CGA)) variants. Our results suggest that RTD substrate recognition in vivo depends primarily on the stability of the acceptor and T-stems, and not the anti-codon stem, and does not necessarily depend on modifications, since fully modified tRNAs are subject to RTD if appropriately destabilized. We found that weaker predicted stability of the acceptor and T-stems of tRNAs is strongly correlated with RTD sensitivity, increased RNase T2 sensitivity of this region of the tRNA in vitro, and increased exposure of the 5' end to phosphatase. We also found that purified Xrn1 selectively degrades RTD substrate tRNAs in vitro under conditions in which nonsubstrates are immune. These results suggest that tRNAs have evolved not only for accurate translation, but for resistance to attack by RTD.


Assuntos
Estabilidade de RNA , RNA de Transferência/química , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Exorribonucleases/metabolismo , Mutação/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nat Methods ; 12(9): 879-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237225

RESUMO

High-throughput RNA sequencing has accelerated discovery of the complex regulatory roles of small RNAs, but RNAs containing modified nucleosides may escape detection when those modifications interfere with reverse transcription during RNA-seq library preparation. Here we describe AlkB-facilitated RNA methylation sequencing (ARM-seq), which uses pretreatment with Escherichia coli AlkB to demethylate N(1)-methyladenosine (m(1)A), N(3)-methylcytidine (m(3)C) and N(1)-methylguanosine (m(1)G), all commonly found in tRNAs. Comparative methylation analysis using ARM-seq provides the first detailed, transcriptome-scale map of these modifications and reveals an abundance of previously undetected, methylated small RNAs derived from tRNAs. ARM-seq demonstrates that tRNA fragments accurately recapitulate the m(1)A modification state for well-characterized yeast tRNAs and generates new predictions for a large number of human tRNAs, including tRNA precursors and mitochondrial tRNAs. Thus, ARM-seq provides broad utility for identifying previously overlooked methyl-modified RNAs, can efficiently monitor methylation state and may reveal new roles for tRNA fragments as biomarkers or signaling molecules.


Assuntos
Algoritmos , Metilação de DNA/genética , Proteínas de Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oxigenases de Função Mista/genética , RNA de Transferência/genética , Software , Sequência de Bases , Dados de Sequência Molecular
16.
Genes Dev ; 24(17): 1832-60, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20810645

RESUMO

tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.


Assuntos
RNA de Transferência , Animais , Nucléolo Celular/metabolismo , Evolução Molecular , Humanos , Processamento de Proteína Pós-Traducional , Splicing de RNA , Estabilidade de RNA , Transporte de RNA , RNA de Transferência/biossíntese , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transdução de Sinais , Transcrição Gênica
17.
RNA ; 21(1): 61-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25404562

RESUMO

Post-transcriptional tRNA modifications are critical for efficient and accurate translation, and have multiple different roles. Lack of modifications often leads to different biological consequences in different organisms, and in humans is frequently associated with neurological disorders. We investigate here the conservation of a unique circuitry for anticodon loop modification required for healthy growth in the yeast Saccharomyces cerevisiae. S. cerevisiae Trm7 interacts separately with Trm732 and Trm734 to 2'-O-methylate three substrate tRNAs at anticodon loop residues C32 and N34, and these modifications are required for efficient wybutosine formation at m(1)G37 of tRNA(Phe). Moreover, trm7Δ and trm732Δ trm734Δ mutants grow poorly due to lack of functional tRNA(Phe). It is unknown if this circuitry is conserved and important for tRNA(Phe) modification in other eukaryotes, but a likely human TRM7 ortholog is implicated in nonsyndromic X-linked intellectual disability. We find that the distantly related yeast Schizosaccharomyces pombe has retained this circuitry for anticodon loop modification, that S. pombe trm7Δ and trm734Δ mutants have more severe phenotypes than the S. cerevisiae mutants, and that tRNA(Phe) is the major biological target. Furthermore, we provide evidence that Trm7 and Trm732 function is widely conserved throughout eukaryotes, since human FTSJ1 and THADA, respectively, complement growth defects of S. cerevisiae trm7Δ and trm732Δ trm734Δ mutants by modifying C32 of tRNA(Phe), each working with the corresponding S. cerevisiae partner protein. These results suggest widespread importance of 2'-O-methylation of the tRNA anticodon loop, implicate tRNA(Phe) as the crucial substrate, and suggest that this modification circuitry is important for human neuronal development.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência de Fenilalanina/genética , Sequência de Aminoácidos , Animais , Anticódon , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA de Transferência de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
18.
RNA ; 21(2): 188-201, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505024

RESUMO

The numerous modifications of tRNA play central roles in controlling tRNA structure and translation. Modifications in and around the anticodon loop often have critical roles in decoding mRNA and in maintaining its reading frame. Residues U38 and U39 in the anticodon stem-loop are frequently modified to pseudouridine (Ψ) by members of the widely conserved TruA/Pus3 family of pseudouridylases. We investigate here the cause of the temperature sensitivity of pus3Δ mutants of the yeast Saccharomyces cerevisiae and find that, although Ψ38 or Ψ39 is found on at least 19 characterized cytoplasmic tRNA species, the temperature sensitivity is primarily due to poor function of tRNA(Gln(UUG)), which normally has Ψ38. Further investigation reveals that at elevated temperatures there are substantially reduced levels of the s(2)U moiety of mcm(5)s(2)U34 of tRNA(Gln(UUG)) and the other two cytoplasmic species with mcm(5)s(2)U34, that the reduced s(2)U levels occur in the parent strain BY4741 and in the widely used strain W303, and that reduced levels of the s(2)U moiety are detectable in BY4741 at temperatures as low as 33°C. Additional examination of the role of Ψ38,39 provides evidence that Ψ38 is important for function of tRNA(Gln(UUG)) at permissive temperature, and indicates that Ψ39 is important for the function of tRNA(Trp(CCA)) in trm10Δ pus3Δ mutants and of tRNA(Leu(CAA)) as a UAG nonsense suppressor. These results provide evidence for important roles of both Ψ38 and Ψ39 in specific tRNAs, and establish that modification of the wobble position is subject to change under relatively mild growth conditions.


Assuntos
RNA Fúngico/genética , RNA de Transferência de Glutamina/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Códon , Transferases Intramoleculares/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
19.
Hum Genet ; 135(7): 707-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27055666

RESUMO

Intellectual disability is a common and highly heterogeneous disorder etiologically. In a multiplex consanguineous family, we applied autozygosity mapping and exome sequencing and identified a novel homozygous truncating mutation in PUS3 that fully segregates with the intellectual disability phenotype. Consistent with the known role of Pus3 in isomerizing uracil to pseudouridine at positions 38 and 39 in tRNA, we found a significant reduction in this post-transcriptional modification of tRNA in patient cells. Our finding adds to a growing list of intellectual disability disorders that are caused by perturbation of various tRNA modifications, which highlights the sensitivity of the brain to these highly conserved processes.


Assuntos
Hidroliases/genética , Deficiência Intelectual/genética , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , Adolescente , Criança , Pré-Escolar , Cognição/fisiologia , Exoma/genética , Feminino , Homozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Mutação , Linhagem , Fenótipo , Pseudouridina/genética
20.
Hum Mutat ; 36(12): 1176-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26310293

RESUMO

tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .


Assuntos
Anticódon , Deficiência Intelectual Ligada ao Cromossomo X/genética , Metiltransferases/genética , Mutação , Proteínas Nucleares/genética , RNA de Transferência/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Códon , Feminino , Expressão Gênica , Genótipo , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Metilação , Metiltransferases/química , Modelos Moleculares , Proteínas Nucleares/química , Conformação de Ácido Nucleico , Linhagem , Conformação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA