Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(5): 2951-7, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25877386

RESUMO

Polarizers provide convenience in generating polarized light, meanwhile their adoption raises problems of extra weight, cost, and energy loss. Aiming to realize polarizer-free polarized light sources, herein, we present a plasmonic approach to achieve direct generation of linearly polarized optical waves at the nanometer scale. Periodic slot nanoantenna arrays are fabricated, which are driven by the transition dipole moments of luminescent semiconductor quantum dots. By harnessing interactions between quantum dots and scattered fields from the nanoantennas, spontaneous emission with a high degree of linear polarization is achieved from such hybrid antenna system with polarization perpendicular to antenna slot. We also demonstrate that the polarization is engineerable in aspects of both spectrum and magnitude by tailoring plasmonic resonance of the antenna arrays. Our findings will establish a basis for the development of innovative polarized light-emitting devices, which are useful in optical displays, spectroscopic techniques, optical telecommunications, and so forth.

2.
Light Sci Appl ; 6(6): e16254, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30167257

RESUMO

Plasmonic metasurfaces have recently attracted much attention because of their novel characteristics with respect to light polarization and wave front control on deep-subwavelength scales. The development of metasurfaces with reconfigurable optical responses is opening new opportunities in high-capacity communications, real-time holograms and adaptive optics. Such tunable devices have been developed in the mid-infrared spectral range and operated in light intensity modulation schemes. Here we present a novel optically reconfigurable hybrid metasurface that enables polarization tuning at optical frequencies. The functionality of tuning is realized by switching the coupling conditions between the plasmonic modes and the binary isomeric states of an ethyl red switching layer upon light stimulation. We achieved more than 20° nonlinear changes in the transmitted polarization azimuth using just 4 mW of switching light power. Such design schemes and principles could be easily applied to dynamically adjust the functionalities of other metasurfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA